Conocimiento especializado de los profesores de matemáticas en formación inicial sobre el concepto de la demostración matemática

Autores/as

DOI:

https://doi.org/10.15359/ru.38-1.5

Palabras clave:

Mathematics teacher’s knowledge, mathematical proof, concept of proof, prospective mathematics teachers

Resumen

[Objective] This paper presents the results of a qualitative, descriptive research study characterizing the knowledge of prospective mathematics teachers at the National University of Costa Rica (UNA) concerning the concept of mathematical proof, using the Mathematics Teacher’s Specialized Knowledge (MTSK) model. [Methodology] This research employed an interpretive paradigm and a qualitative approach. A questionnaire was administered to 42 mathematics teachers in initial training during the first semester of 2021, in the fourth and fifth years of the Bachelor’s Degree program in Mathematics Teaching at the National University of Costa Rica. Content analysis was utilized to study the answers provided by participants. Groupings of answers were created to generate central ideas about the concept of proof. [Results] Based on the results, four central ideas were found about the nature of mathematical proof for the survey participants. These ideas are similar to the formal logical-syntactic and mathematical aspects (LSMA) or informal semantic aspects (ISA). Evidence for the five De Villiers (1993) functions of a proof was found. Moreover, new functions related to them were discovered in mathematics and in school mathematics. [Conclusions] The results provide input to trainers of mathematics teachers and researchers for the review and analysis of teacher training programs. Additionally, they contribute to the search for new research areas related to this subject.

Referencias

References

Alfaro, C., Flores, P. y Valverde, G. (2020). Conocimiento especializado de profesores de matemática en formación inicial sobre aspectos lógicos y sintácticos de la demostración. PNA, 14(2), 85-117. https://doi.org/10.30827/pna.v14i2.9363

Cabassut, R., Conner, A., İşçimen, F. A., Furinghetti, F., Jahnke, H. N. y Morselli, F. (2012). Conceptions of proof - In research and teaching [Concepciones de la demostración - En la investigación y la docencia]. En G. Hanna y M. De Villiers (eds.), Proof and proving in mathematics education (pp. 169-190). Springer. https://doi.org/10.1007/978-94-007-2129-6_7

Carrillo, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Ávila, D., ... y Muñoz-Catalán, C. (2018). The mathematics teacher’s specialized knowledge (MTSK) model [El modelo de conocimiento especializado del profesor de matemática (MTSK)]. Research in Mathematics Education, 20(3), 236-253. Doi: https://doi.org/10.1080/14794802.2018.1479981

Cohen, L., Manion, L. y Morrison, K. (2007). Research Methods in Education [Métodos de Investigación en Educación]. Routledge. https://doi.org/10.4324/9780203029053

De Villiers, M. (1993). El papel y la función de la demostración en matemáticas. Epsilon, 26, 15-30.

Elbaz, F. (1983). Teacher Thinking. A Study of Practical Knowledge [Pensamiento del maestro: Un estudio del conocimiento de la práctica]. Routledge.

Flores-Medrano, E., Montes, M., Carrillo, J., Contreras, L., Muñoz-Catalán, M. y Liñán, M. (2016). El Papel del MTSK como Modelo de Conocimiento del Profesor en las Interrelaciones entre los Espacios de Trabajo Matemático. Bolema: Boletim de Educação Matemática, 30(54), 204-221. https://doi.org/10.1590/1980-4415v30n54a10

Hanna, G. y De Villiers, M. (2012). Aspects of proof in mathematics education [Aspectos de la demostración en la educación matemática]. En G. Hanna y M. De Villiers (eds.), Proof and proving in mathematics education (pp. 1-10). Springer. https://doi.org/10.1007/978-94-007-2129-6_1

Hernández-Suárez, C. A., Prada-Núñez, R., Parada-Carrillo, D. A. y Pumarejo-García, L. D. (2020). La comprensión de las demostraciones matemáticas. Un estudio de revisión. Eco Matemático, 11(2), 100-110. https://doi.org/10.22463/17948231.3201

Knuth, E. J. (2002). Secondary school mathematics teachers’ conceptions of proof [Concepciones de demostración de profesores de matemática de secundaria]. Journal for research in mathematics education, 33(5), 379-405. Doi: https://doi.org/10.2307/4149959

Legris, J. (2012). Nota sobre el concepto de demostración en CS Peirce. Notae Philosophicae Scientiae Formalis, 1(2), 124-134.

Mariotti, M. A. (2006). Proof and proving in mathematics education [Demostración y demostrar en la educación matemática]. En A. Gutiérrez y P. Boero (eds.), Handbook of research on the psychology of mathematics education (pp. 173-204). Sense Publisher. https://doi.org/10.1163/9789087901127_008

Mejía-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K. y Samkoff, A. (2012). An assessment model for proof comprehension in undergraduate mathematics [Un modelo de evaluación para la comprensión de demostraciones en matemáticas de pregrado]. Educational Studies in Mathematics, 79(1), 3-18. Doi: https://doi.org/10.1007/s10649-011-9349-7

Ponte, J. P. y Chapman, O. (2006). Mathematics teachers’ knowledge and practices [Conocimientos y práctica de los profesores de matemáticas]. En A. Gutierrez y P. Boero (eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 461-494). Roterdham: Sense Publisher. Doi: https://doi.org/10.1163/9789087901127_017

Selden, A. y Selden, J. (2017). A comparison of proof comprehension, proof construction, proof validation and proof evaluation [Una comparación de comprensión de demostración, construcción de demostración, validación de demostración y evaluación de demostración]. En R. Gölle, R. Biehler, R. Hochmuth y H. Rück (eds.), Proceedings of the Conference on Didactics of Mathematics in Higher Education as a Scientific Discipline (pp. 339-345). Universitätsbibliothek Kassel.

Shulman, L. (1986). Those who understand: Knowledge growth in teaching [Los que entienden: El conocimiento crece en la enseñanza]. Educational Researcher, 15(2), 4-14. Doi: https://doi.org/10.3102/0013189X015002004

Stylianides, G. J., Stylianides, A. J. y Weber, K. (2017). Research on the teaching and learning of proof: Taking stock and moving forward [Investigación sobre la enseñanza y el aprendizaje de la demostración: Hacer un balance y avanzar]. En J. Cai (ed.), Compendium for Research in Mathematics Education (pp. 237-266). National Council of Teachers of Mathematics.

Tall, D., Yevdokimov, O., Koichu, B., Whiteley, W., Kondratieva, M. y Cheng, Y. H. (2012). Cognitive development of proof [Desarrollo cognitivo de la demostración]. En G. Hanna y M. De Villiers (eds.), Proof and proving in mathematics education (pp. 13-49). Springer. https://doi.org/10.1007/978-94-007-2129-6_2

Publicado

2024-01-01

Número

Sección

Artículos científicos originales (arbitrados por pares académicos)

Comentarios (ver términos de uso)