Aislamiento, identificación y caracterización de cepas bacterianas con potencial de degradación de los plaguicidas clorotalonil y clorpirifos

Autores/as

DOI:

https://doi.org/10.15359/ru.37-1.26

Palabras clave:

biorremediación bacteriana, clorpirifos, clorotalonil, contaminación del suelo, fungicida, insecticida

Resumen

El uso indiscriminado de plaguicidas altamente tóxicos en la agricultura ha producido contaminación de los suelos y deterioro de los ecosistemas. Una solución prometedora para este problema ambiental es la biorremediación, que incluye el uso de bacterias para degradar estas sustancias contaminantes. [Objetivo] El presente trabajo tuvo por objetivo el aislamiento, identificación y caracterización de cepas bacterianas con capacidad de degradar los plaguicidas clorotalonil y clorpirifos, para su potencial uso en la biorremediación de suelos contaminados. [Metodología] Las cepas fueron aisladas de suelos agrícolas mediante cultivos de enriquecimiento, que contenían clorotalonil o clorpirifos (20 mg/L) como única fuente de carbono. Las cepas aisladas se caracterizaron por su morfología, fisiológicamente por su respuesta a 48 pruebas bioquímicas y frente a 15 antibióticos, cinética de crecimiento, y molecularmente (amplificación del gen ADNr 16S). [Resultados] Se aisló una cepa bacteriana capaz de utilizar (y degradar) clorpirifos como fuente de carbono, identificada como Stenotrophomonas maltophilia y dos cepas bacterianas con capacidad parcial de utilizar clorotalonil como fuente de carbono, identificadas como Enterobacter cloacae y Ochrobactrum anthropi. Las tres especies bacterianas son bacilos Gram negativo y presentaron características fisiológicas diversas, incluyendo resistencia variable a ciertos antibióticos. [Conclusión] Se concluye que las bacterias aisladas tienen potencial biotecnológico para ser incorporadas en una estrategia de biorremediación de suelos contaminados, especialmente para eliminación de clorpirifos. Finalmente, se plantean perspectivas de investigación a futuro para dilucidar procesos más eficientes de degradación de clorotalonil mediante cometabolismo.

 

Referencias

Akbar, S. & Sultan, S. (2016). Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Brazilian Journal of Microbiology, 47, 563-570. https://doi.org/10.1016/j.bjm.2016.04.009

Aktar, M. D. W.; Sengupta, D. & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1): 1–12. https://doi.org/10.2478/v10102-009-0001-7

Bass, C. & Field, L. M. (2011). Gene amplification and insecticide resistance. Pest Management Science. 67(8): 886–890. https://doi.org/10.1002/ps.2189

Betancourt-Portela, J. M., Bautista-Duarte, P. A., Narváez-Flórez, S. & Parra-Lozano, J. P. (2018). Biodegradation of chlorothalonil fungicide in coastal areas of the Colombian Caribbean suitable for banana crops. Tecciencia, 13(25), 19-28.

Bravo, D. V., de la Cruz, M. E., Herrera, L. G., Ramírez, M. F. (2013). Uso de plaguicidas en cultivos agrícolas como herramienta para el monitoreo de peligros en salud. Uniciencia 27(1): 351-376.

Bravo-Durán, V., Berrocal-Montero, S. E., Ramírez-Muñoz, F., de la Cruz-Malavassi, E., Canto-Mai, N., Tatis-Ramírez, A., Mejía-Merino, W. & Rodríguez-Altamirano, T. (2015). Importación de plaguicidas y peligros en salud en América Central durante el periodo 2005 – 2009, Uniciencia, 29(2): 84-106. http://dx.doi.org/10.15359/ru.29-2.6

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular biology and evolution, 17(4), 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334

Caux, P. Y., Kent, R. A., Fan, G. T. & Stephenson, G. L. (1996). Environmental fate and effects of chlorothalonil: A Canadian perspective. Critical Reviews in Environmental Science and Technology, 26(1), 45-93. https://doi.org/10.1080/10643389609388486

Chen, Y., Ye, W., Zhang, Y., & Xu, Y. (2015). High speed BLASTN: An accelerated MegaBLAST search tool. Nucleic Acids Research, 43(16), 7762–7768. https://doi.org/10.1093/nar/gkv784

Chibueze, A. C.; Blaise C. C.; & Chijioke, O. G. (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32(180), 1-18. https://doi.org/10.1007/s11274-016-2137-x

Cox, C. (1997). Chlorothalonil. Journal of Pesticide Reform, 17(4), 14-20. https://d3n8a8pro7vhmx.cloudfront.net/ncap/pages/26/attachments/original/1428423330/chlorothalonil.pdf?1428423330

Cycoń M., Mrozik, A. & Piotrowska-Seget, Z. (2019). Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Frontiers in Microbiology, 10:338. https://doi=10.3389/fmicb.2019.00338

Draper, A., Cullinan, P., Campbell, C., Jones, M. & Taylor, A. N. (2003). Case report. Occupational asthma from fungicides fluazinam and chlorothalonil. Occupational Environmental Medicine Journal, 60, 76–77. https://doi.org/10.1136/oem.60.1.76

Harada, N., Takagi, K., Baba, K., Fujii, K. & Iwasaki A. (2010). Biodegradation of diphenylarsinic acid to arsenic acid by novel soil bacteria isolated from contaminated soil. Biodegradation, 21, 491–499. https://doi.org/ 10.1007/s10532-009-9318-3

Hussain, S., Siddique, T., Arshad, M. & Saleem, M. (2009). Bioremediation and phytoremediation of pesticides: Recent Advances. Critical Reviews in Environmental Science and Technology, 39(10), 843-907. http://dx.doi.org/10.1080/10643380801910090

Johnsen, K., Jacobsen, C. S., Torsvik, V. & Sørensen, J. (2001). Pesticide effects on bacterial diversity in agricultural soils – a review. Biology and Fertility of Soils, 33, 443–453. https://doi.org/10.1007/s003740100351

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods, 14(6), 587-589. https://doi.org/10.1038/nmeth.4285

Katayama, A., Isemura, H. & Kuwatsuka, S. (1991). Population change and characteristics of chiorothalonil-degrading bacteria in soil. Journal of Pesticide Science, 16, 239-245. https://doi.org/10.1584/jpestics.16.239

Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. 30(4), 772-780. https://doi.org/10.1093/molbev/mst010

Lakshmi, C. V., Kumar, M., Khannaa, S. (2008). Biotransformation of chlorpyrifos and bioremediation of contaminated soil. International Biodeterioration & Biodegradation, 62, 204–209. https://doi.org/10.1016/j.ibiod.2007.12.005

Lee, W., Bridge, D. R., Lee A. W., Odom, J. V., Elliott, T. & Olson, J. C. (2012). Bacterial biofilm diversity in contact lens-related disease: Emerging Role of Achromobacter, Stenotrophomonas, and Delftia. Investigative Ophthalmology & Visual Science, 53(7), 3896-3905. https://doi.org/10.1167/iovs.11-8762

Mau, S., Vega, K. & Sánchez, M. (2011). Aislamiento de bacterias del suelo y su potencial utilización en sistemas de tratamiento de aguas residuales. Revista de Ciencias Ambientales. 42(2): 45-52. http://dx.doi.org/10.15359/rca.42-2.4

Menon, P., Gopal, M. & Prasad, R. (2004). Influence of two insecticides, chlorpyrifos and quinalphos, on arginine ammonification and mineralizable nitrogen in two tropical soil type. Journal of Agricultural and Food Chemistry, 52, 7370−7376. https://doi.org/10.1021/jf049502c

Motonaga, K., Takagi, K. & Matumoto, S. (1996). Biodegradation of chlorothalonil in soil after suppression of degradation. Biology and Fertility of Soils, 23, 340-345. https://doi.org/10.1007/BF00335964

Nandhini, A. R., Harshiny, M. & Gummadi, S. N. (2021). Chlorpyrifos in environment and foods: A critical review of detection methods and degradation pathways. Environmental Science: Processes & Impacts, 1-61. https://doi.org/10.1039/D1EM00178G.

Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution, 32(1), 268-274. https://doi.org/10.1093/molbev/msu300

PAN [Pesticide Action Network]. (2021). PAN International List of Highly Hazardous Pesticides. Pesticide Action Network. Disponible en: http://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf

Rambaut, A. (2009). FigTree 2012-2014 (Versión 1.4). http://tree.bio.ed.ac.uk/software/figtree

Ramírez-Muñoz, F., Fournier-Leiva, M. L., Ruepert, C. & Hidalgo-Ardón, C. (2014). Uso de agroquímicos en el cultivo de papa en Pacayas, Cartago, Costa Rica. Agronomía Mesoamericana 25(2): 337-345. https://doi.org/10.15517/am.v25i2.15441

Ryan, R. P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L. Avison, M. V., Berg, G., van der Lelie, D. & Dow. J. M. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews Microbiology 7:514-525. https://doi:10.1038/nrmicro2163

Sun, D., Jeannot, K., Yonghong, X. & Charles W. K. (2019). Horizontal gene transfer mediated bacterial antibiotic resistance. Frontiers in Microbiology 10:1933. http://doi=10.3389/fmicb.2019.01933

Shi, X., Guo R., Takagi, K., Miao, Z. & Li, S. (2011). Chlorothalonil degradation by Ochrobactrum lupini strain TP-D1 and identification of its metabolites. World Journal of Microbiology and Biotechnology, 27, 1755–1764. https://doi.org/10.1007/s11274-010-0631-0

Sigler, W. V. & Turco, R. F. (2002). The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. Applied Soil Ecology, 21, 107–118. https://doi.org/10.1016/S0929-1393(02)00088-4

Singh, B. K., Walker, A. & Wright D. J. (2002). Persistence of chlorpyrifos, fenamiphos, chlorothalonil, and pendimethalin in soil and their effects on soil microbial characteristics. Bulletin of Environmental Contamination and Toxicology, 69, 181–188. https://doi.org/ 10.1007/s00128-002-0045-2

Spierer, O., Miller, D. & O’Brien, T. (2018). Comparative activity of antimicrobials against Pseudomonas aeruginosa, Achromobacter xylosoxidans and Stenotrophomonas maltophilia keratitis isolates. Journal of Ophthalmology, 1–5. http://10.1136/bjophthalmol-2017-311751

Tang, L., Dong, J., Ren, L., Zhu, Q., Huang W., Liu, Y. & Lu D. (2017). Biodegradation of chlorothalonil by Enterobacter cloacae TUAH-1. International Biodeterioration & Biodegradation, 121, 122-130. http://dx.doi.org/10.1016/j.ibiod.2017.03.029

Tang, W.; Ji, H. & Xinyun Hou, X. (2017). Research progress of microbial degradation of organophosphorus pesticide. Progress in Applied Microbiology, 29-35. https://www.ipindexing.com/article/24362

Trifinopoulos, J., Nguyen, L. T., von Haeseler, A., & Minh, B. Q. (2016). W-IQ-TREE: a fast-online phylogenetic tool for maximum likelihood analysis. Nucleic acids research, 44(1), 232-235. https://doi.org/10.1093/nar/gkw256´

Trigo, A., Valencia, A. & Cases, I. (2009). Systemic approaches to biodegradation. FEMS Microbiology Reviews, 33: 98-108. https://doi.org/10.1111/j.1574-6976.2008.00143.x

Tudi, M., Ruan, H. D., Wang, L., Lyu J., Sadler, R., Connell, D., Chu, C. & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18(1112), 1-23. https://doi.org/10.3390/ijerph18031112

Verma, A. (2021). Bioremediation techniques for soil pollution: An Introduction. In: Ferreira, M. K.; Nogueira de S. R. & Cabral, M. K. Biodegradation technology of organic and inorganic pollutants. IntechOpen. Pp. 289-302. https://doi.org/10.5772/intechopen.99028

Vidali, M. (2001). Bioremediation. An overview. Pure Applied Chemistry, 73(7), 163–1172. https://doi.org/10.1351/pac200173071163

Wang, G., Liang, B., Li, F. & Li, S. (2011). Recent advances in the biodegradation of chlorothalonil. Current Microbiology, 63, 450–457. https://doi.org/10.1007/s00284-011-0001-7

Wang, X., Sun, S. Y., Lu, J. L. & Bao, J. (2019). Remediating chlorpyrifos-contaminated soil using immobilized microorganism technology. Polish Journal of Environmental Stududies, (28)1, 349-357. https://doi.org/10.15244/pjoes/83669

WHO [World Health Organization] & United Nations Environment Programme. (‎1990)‎. Public health impact of pesticides used in agriculture. World Health Organization. https://apps.who.int/iris/handle/10665/39772

Yang, L.; Zhao, Y., Zhang, B., Yang, C., Zhang, X. (2005). Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiology Letters, 251, 67–73. https://doi.org/10.1016/j.femsle.2005.07.031

Zhang, M. Y., Teng, Y., Zhu, Y., Wang, J., Luo, Y. M., Christie, P., Li, Z. G. & Udeigwe, T. K. (2014). Isolation and characterization of chlorothalonil-degrading bacterial strain H4 and its potential for remediation of contaminated soil. Pedosphere, 24(6): 799–807. https://doi.org/10.1016/S1002-0160(14)60067-9

Zhang, Q., Liu, H., Saleem, M. & Wang, C. (2019). Biotransformation of chlorothalonil by strain Stenotrophomonas acidaminiphila BJ1 isolated from farmland soil. Royal Society Open Science, 6(190562), 1-9. http://dx.doi.org/10.1098/rsos.190562

Publicado

2023-09-01

Cómo citar

Aislamiento, identificación y caracterización de cepas bacterianas con potencial de degradación de los plaguicidas clorotalonil y clorpirifos. (2023). Uniciencia, 37(1), 1-16. https://doi.org/10.15359/ru.37-1.26

Número

Sección

Artículos científicos originales (arbitrados por pares académicos)

Cómo citar

Aislamiento, identificación y caracterización de cepas bacterianas con potencial de degradación de los plaguicidas clorotalonil y clorpirifos. (2023). Uniciencia, 37(1), 1-16. https://doi.org/10.15359/ru.37-1.26

Comentarios (ver términos de uso)