Construcciones y mecanismos mentales para el aprendizaje de la función exponencial en contexto escolar
DOI:
https://doi.org/10.15359/ru.38-1.7Palabras clave:
Teoría APOE, función exponencial, contexto escolarResumen
[Objetivo] El estudio tuvo como objetivo examinar bajo la mirada de la teoría APOE (acción, proceso, objeto y esquema), la producción de estudiantes de educación secundaria al abordar 11 ítems relacionados con la función exponencial. [Metodología] El enfoque fue de corte cualitativo, a través del análisis de contenido. La muestra fue de 15 estudiantes (entre 15 a 18 años), nominados de manera no probabilística con interés de obtener la mayor cantidad de información. Para el diseño del instrumento intencionado desde la teoría, se construyó una descomposición genética hipotética del concepto de función exponencial como objeto cognitivo de acuerdo con las estructuras (acción, proceso, objeto y esquema) y mecanismos mentales (interiorización, coordinación, encapsulación, desencapsulación, reversión), para interpretar la construcción mental que realizan los estudiantes sobre la función en estudio, con base en su desarrollo histórico epistemológico, la presentación en textos escolares y la experiencia del investigador. [Resultados] En el nivel de resultados se evidenció que 13 estudiantes muestran una concepción acción de la función estudiada y 2 estudiantes que llegaron a construir el concepto como proceso. [Conclusiones] Se concluye que los estudiantesonstruyen el concepto de función exponencial como acción, es decir, todo lo relacionado con procesos repetitivos y mecánicos con potencias, cálculo de imágenes, representación gráfica, solución de ecuaciones exponenciales, incluso algunos estudiantes dan respuesta a los ítems sin realizar explícitamente todos los pasos requeridos en la resolución. Dichos resultados evidencian ausencia de un proceso mental de la función exponencial y por consecuencia la encapsulación de él en el objeto función exponencial
Referencias
Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa, S., Trigueros, M., & Weller, K. (2014). APOS theory. A framework for research and curriculum development in mathematics education. New York, NY: Springer. https://doi.org/10.1007/978-1-4614-7966-6
Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1997). A framework for research and curriculum development in undergraduate mathematics education. Maa Notes, 2, 37-54. https://doi.org/10.1090/cbmath/006/01
Birgin, O., & Acar, H. (2020). The effect of computer-supported collaborative learning using GeoGebra software on 11th grade students’ mathematics achievement in exponential and logarithmic functions. International Journal of Mathematical Education in Science and Technology, 53(4), 872-889. https://doi.org/10.1080/0020739X.2020.1788186
Borji, V., Martínez-Planell, R., & Trigueros, M. (2022). Student understanding of functions of two variables: A reproducibility study. The Journal of Mathematical Behavior, 66. https://doi.org/10.1016/j.jmathb.2022.100950
Boyer, C. (1986). Historia de la matemática. Madrid, España: Alianza Editorial.
Campo-Meneses, K. y García-García, J. (2020). Explorando las conexiones matemáticas asociadas a la función exponencial y logarítmica en estudiantes universitarios colombianos. Revista Educación Matemática, 32(3), 209-240. https://doi.org/10.24844/em3203.08
Cantoral, R. y Farfán, M. R. (2004). Desarrollo conceptual del cálculo. México, D. F.: International Thomson Editores.
Cañibano, A., Sastre, P. y D´Andrea, R. E. (2017). Aplicación de la función exponencial sobre el cambio aritmético en la variable independiente. Unión, 13(49), 84-96.
Castro, M., González, M., Flores, S., Ramírez, O., Cruz, M. y Fuentes, M. (2017). Registros de representación semiótica del concepto de función exponencial. Parte I. Entreciencias, 5(13), 1-12, http://dx.doi.org/10.21933/J.EDSC.2017.13.218
Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process scheme. Journal of Mathematical Behavior, 15(2), 167-192. https://doi.org/10.1016/S0732-3123(96)90015-2
Cuero, S. (2021). Una secuencia de aprendizaje para la comprensión de algunos elementos de la función exponencial a través de la articulación de diferentes registros de representación (tesis de maestría). Universidad Nacional de Colombia, Colombia.
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking, En D. Tall. (Ed.). Advanced Mathematical Thinking (pp. 95-123). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47203-1_7
Duval, R. (1993), Registres de représentation sémiotique et fonctionnement cognitif de la pensé. Annales de Didactique et de Sciences Cognitives, 5, 37-65.
Figueroa, D. P. S. (2012). Enseñanza de las funciones exponenciales en la escuela secundaria. Aspectos didácticos y cognitivos. Enseñanza de las Ciencias, 30(3), 321-326. https://doi.org/10.5565/rev/ec/v30n3.947
Fuentealba, C., Sánchez-Matamoros, G., Badillo, E., & Trigueros, M. (2017). Thematization of derivative schema in university students: Nuances in constructing relations between a function's successive derivatives. International Journal of Mathematical Education in Science and Technology, 48(3), 374-392. https://doi.org/10.1080/0020739X.2016.1248508
García, D. y Martínez, M. (2018). Estudio del proceso de génesis instrumental del artefacto simbólico función exponencial. Transformación, 14(2), 252-261.
González, D. E. y Roa, S. (2017). Un esquema de transformación lineal: construcción de objetos abstractos a partir de la interiorización de acciones concretas. Enseñanza de las Ciencias, 35(2), 89-107. https://doi.org/10.5565/rev/ensciencias.2150
Gordon, S., & Yang, Y. (2016). Approximating exponential and logarithmic functions using polynomial interpolation. International Journal of Mathematical Education in Science and Technology, 48(3), 455-473. https://doi.org/10.1080/0020739X.2016.1254297
Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64-74. https://doi.org/10.1119/1.18809
Hernández, R., Fernández, C. y Baptista, P. (2014). Metodología de la investigación. México D. F.: McGraw-Hill.
Hitt, F. (1998). Difficulties in the articulation of different representations linked to the concept of function. Journal of Mathematical Behavior, 17(1), 123-134. https://doi.org/10.1016/s0732-3123(99)80064-9
Manghiert, R. e Ingar, K. (2019). La función exponencial en la enseñanza media: un estado del arte. Revista de Produção Discente em Educação Matemática, 8(2), 27-47. http://dx.doi.org/10.23925/2238-8044.2019v8i2p27-47
Martínez-Planell, R., & Trigueros, M. (2020). Students’ understanding of Riemann sums for integrals of functions of two variables. The Journal of Mathematical Behavior, 59. https://doi.org/10.1016/j.jmathb.2020.100791.
Meléndez, J. y Grueso, R. (Noviembre de 2021). Conocimiento especializado del profesor de matemáticas en torno a la función exponencial. En J. Moriel (organizadora), Simposio llevado a cabo en V Congreso Iberoamericano sobre Conocimiento Especializado del Profesor de Matemáticas, Brasil.
Ministerio de Educación de Chile. (2022). Texto del estudiante 3.° y 4.° medio. Santiago: MINEDUC. Recuperado de: https://www.curriculumnacional.cl/614/articles-145588_textoescolar_muestra.pdf
Oktaç, A. (2019). Mental constructions in linear algebra. ZDM Mathematics Education, 51(7), 1043-1054. https://doi.org/10.1007/s11858-019-01037-9
Oktaç, A., Trigueros, M., & Romo, A. (2019). APOS THEORY. For the Learning of Mathematics, 39(1), 33-37.
Rehman, A. A., & Alharthi, K. (2016). An introduction to research paradigms. International Journal of Educational Investigations, 3(8), 51-59.
Reyes, L., De Oliveira, G., García, A., Velloso, A. y Kuo, C. (2017). Construcción de praxeologías relacionadas con la función exponencial conducidas mediante la teoría antropológica de lo didáctico. Revista de Educação, Ciências e Mathematics, 7(1), 4-15.
Ríbnikov, K. (1987). Historia de las Matemáticas. Moscú, URSS: Editorial Mir.
Roa-Fuentes, S. y Oktaç, A. (2012). Validación de una descomposición genética de transformación lineal: un análisis refinado por la aplicación del ciclo de investigación de la teoría APOE. Revista Latinoamericana de Investigación en Matemática Educativa, 15(2), 199-232.
Roa-Fuentes, S. y Parraguez, M. (2017). Estructuras mentales que modelan el aprendizaje de un teorema del álgebra lineal: un estudio de casos en el contexto universitario. Formación Universitaria, 10(4), 15-32. http://dx.doi.org/10.4067/S0718-50062017000400003
Rodríguez, M., Ledezma, C., Vergara, A. y Gregori, P. (2021). Reconstrucción cognitiva de los conceptos centrales de la función exponencial: un estudio de enfoque mixto. Formación Universitaria, 14(6), 149-164. http://dx.doi.org/10.4067/S0718-50062021000600149
Rodríguez, M., Parraguez, M. y Trigueros, M. (2018). Construcción cognitiva del espacio vectorial R 2. Revista Latinoamericana de Investigación en Matemática Educativa, 21(1), 57-86. https://doi.org/10.12802/relime.18.2113
Ruiz, J. (2022). La aplicación de herramientas digitales con el enfoque ontosemiótico y su influencia en el aprendizaje de funciones exponenciales y logarítmicas. Revista Científica del Sistema de Estudios de Postgrado de la Universidad de San Carlos de Guatemala, 5(1), 15–22. https://doi.org/10.36958/sep.v5i1.92
Simg, R. y Trigueros, M. (2022). El papel de los conceptos geométricos como base para el aprendizaje del método simplex. Revista Educación Matemática, 34(1), 70-99. https://doi.org/10.24844/em3401.03
Stake, R. E. (1999). Investigación con estudio de casos. Madrid, España: Morata.
Sureda, P. y Otero, M. (2019). Construcción de la función exponencial a partir de la Potenciación. SIGMA, 15(1), 1-15.
Sureda, P. y Otero, M. (2013). Estudio sobre el proceso de conceptualización de la función exponencial. Revista Educación Matemática, 25(2), 89-118.
Velásquez, F. (2014). Creencias y una aproximación de la concepción de los profesores sobre el proceso de enseñanza y aprendizaje de la función exponencial en cursos de precálculo (tesis de magíster). Pontificia Universidad Católica del Perú, Escuela de Posgrado, San Miguel.
Publicado
Número
Sección
Licencia
Derechos de autor 2024 compartidos: Revista y Autores(as) (CC-BY-NC-ND)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
1. Los autores garantizan a la revista el derecho de ser la primera publicación del trabajo al igual que licenciado bajo una Creative Commons Attribution License que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
2. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
3. Los autores han afirmado poseer todos los permisos para usar los recursos que utilizaron en el artículo (imágenes, tablas, entre otros) y asumen la responsabilidad total por daños a terceros.
4. Las opiniones expresadas en el artículo son responsabilidad de los autores y no necesariamente representan la opinión de los editores ni de la Universidad Nacional.
Revista Uniciencia y todas sus producciones se encuentran bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
No existe costo por acceso, revisión de propuestas ni publicación para autores y lectores.