Medidas de control de olores para un tanque homogeneizador de una planta de tratamiento de aguas residuales en Costa Rica

Autores/as

DOI:

https://doi.org/10.15359/ru.38-1.26

Palabras clave:

adición de cal, percepción de olor, potencial de oxidación-reducción, ruedas de olor, sulfuro de hidrógeno

Resumen

[Objetivo] El objetivo de este estudio fue evaluar la respuesta, a corto plazo, de cuatro diferentes medidas de control de olores en un tanque de homogeneización de una PTAR universitaria. [Metodología] Se aplicaron la aireación, adición de cal, adición de sulfato de hierro y adición del producto comercial BiOWiSH® Odor, durante cuatro tiempos de retención hidráulica. Se monitoreó el afluente y la unidad en cada periodo, utilizando una línea base como comparación de las medidas. Se midió por triplicado, cada 30 min, el potencial de hidrógeno, potencial de oxidación-reducción, oxígeno disuelto y la concentración de sulfuro disuelto. Se pasó una encuesta de percepción de olores a visitantes de la PTAR, con el propósito de evaluar intensidad, ofensividad y carácter (en total, 15 encuestas por periodo de monitoreo). Se determinaron diferencias entre las medidas de control y la línea base, con pruebas t-student (datos cuantitativos) y medianas de Mood (datos cualitativos). Se usó Minitab2019 y un límite de confianza de 95 %. [Resultados] Todas las medidas de control disminuyeron significativamente la concentración de sulfuro disuelto en la unidad. La aireación evitó el agotamiento de oxígeno, el régimen reductivo y la fermentación ácida, favoreciendo la oxidación de odorantes; además, fue la única medida de control estudiada que generó una reducción en la intensidad y ofensividad del olor. [Conclusiones] La aplicación de aireación generó un cambio en el comportamiento de la unidad y la percepción de olor, hecho que confirma su efectividad. La adición de sulfato de hierro, cal y BiOWiSH® no produjeron modificaciones significativas en la percepción de olor.

 

Referencias

Allende, I., Barceló, I., Bussy, A. L., González, C. y Solís, H. (2002). Determinación del estado de equilibrio de un sistema hídrico. Revista de la Sociedad Química de México, 46. https://www.scielo.org.mx/scielo.php?pid=S0583-76932002000200004&script=sci_arttext

Attal, A., Brigodiot, M., Camacho, P. y Manem, J. (1992). Biological mechanisms of H2S formation in sewer pipes. Water Science and Technology, 26(1), 907-921. https://doi.org/10,2166/wst,1992,0471

Bazemo, U., Gradner, E., Romero, A., Hauduc, H., Al-Omari, A., Takacs, I., Murthy, S., Torrents, A. y De Clippeleir, H. (2020). Investigating the dynamics of volatile sulfur compound emission from primary systems at a water resource recovery facility. Water Environment Research, 93(2), 316-327. https://doi.org/10,1002/wer,1417

BiOWiSH technologies. (2006). BiOWiSH® Odor Case Study- Rapidly Reducing Odor at Sewage Station in Se Jing Shan District, China. BiOWiSH technologies. https://www.biowishtechnologies.com/resource/odor-emissions-sewage-station-china/

Brancher, M., Griffiths, K. D., Franco, D. y Lisboa, H. (2017). A review of odour impact criteria in selected countries around the world. Chemosphere, 168, 1531-1570. https://doi.org/10.1016/j.chemosphere.2016.11.160

Burlingame, G. A. (2009). A practical framework using odor survey data to prioritize nuisance odors. Water Science and Technology, 59(3), 595-602. https://doi.org/10.2166/wst.2009.872

Carrera-Chapela, F., Donoso-Bravo, A., Souto, J. A. y Ruiz-Filippi, G. (2014). Modeling the Odor Generation in WWTP: An Integrated Approach Review. Water, Air, & Soil Pollution, 255(1), 1-15. https://doi.org/10,1007/s11270-014-1932-y

Chen, G. H., van Loosdrecht, M. C., Ekama, G. A. y Brdjanovic, D. (2023). Biological wastewater treatment: principles, modeling and design. London: IWA publishing. https://doi.org/10.2166/9781789060362

Decreto No. 33601-S - Reglamento de Vertido y Reuso de Aguas Residuales, Pub. L. No. Decreto, La Gaceta no. 234, alcance 106 (2007). https://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?param1=NRTC&nValor1=1&nValor2=59524&nValor3=83250&strTipM=T C (Accedido el 15-1-23).

Environmental, Y. S. I. (2007). ORP management in wastewater as indicator of process efficiency. Yellow Springs, OH: YSI.

Firer, D., Friedler, E. y Lahav, O. (2008). Control of sulfide in sewer systems by dosage of iron salts: Comparison between theoretical and experimental results, and practical implications. Science of the Total Environment, 392(2), 145-156. https://doi.org/10,1016/j.scitotenv,2007,11,008

Gamonal, S. P. y Sota, L. (2021). Revisión Sistemática: Compuestos Odorantes Emitidos en el Tratamiento de Aguas Residuales, y su Efecto en la Salud Comunitaria. (Tesis de bachillerato). Universidad César Vallejo, La Libertad, Perú. https://hdl.handle.net/20,500,12692/64900

García, E. M. y López, J. (1985). Aspectos sanitarios del estudio de las aguas. Granada: Universidad de Granada.

Goel, R. K., Flora, J. R. V. y Chen, J. P. (2005). Flow Equalization and Neutralization. En: Wang, L. K., Hung, Y. T. y Shammas, N. K. (eds.), Physicochemical Treatment Processes. Handbook of Environmental Engineering, vol 3. Humana Press. https://doi.org/10.1385/1-59259-820-x:021

Gostelow, P., Parsons, S. A. y Stuetz, R. M. (2001). Odour measurements for sewage treatment works. Water Research, 35(3), 579-597. https://doi.org/10,1016/s0043-1354(00)00313-4

Griffiths, K. D. (2014). Disentangling the frequency and intensity dimensions of nuisance odour and implications jurisdictional odour impact criteria. Atmospheric Environment, 90, 125-132. https://doi.org/10,1016/j.atmosenv,2014,03,022

Gudjonsson, G., Vollertsen, J. y Hvitved-Jacobsen, T. (2002). Dissolved oxygen in gravity sewers - measurement and simulation. Water Science and Technology, 45(3), 35-44. https://doi.org/10,2166/wst,2002,0049

Hao, O. J., Chen, J. M., Huang, J. y Buglass, R. L. (2009). Sulfate-Reducing bacteria. Critical Reviews in Environmental Science and Technology, 26(2), 155-187. https://doi.org/10.1080/10643389609388489

Hauduc, H., Wadhawan, T., Johnson, B., Bott, C., Ward, M. y Takacs, I. (2019). Incorporating sulfur reactions and interactions with iron and phosphorus into a general plant-wide model. Water Science and Technology, 79(1), 26-37. https://doi.org/10,2166/wst,2018,482

Hawko, C., Verriele, M., Hucher, N., Crunaire, S., Leger, C., Locoge, N. y Savary, G. (2021). A review of environmental odor quantification and qualification methods: The question of objectivity in sensory analysis. Science of The Total Environment, 795(1), 1-20. https://doi.org/10,1016/j.scitotenv,2021,148862

Hvitved, T., Vollertsen, J. y Tanaka, N. (2000). An integrated aerobic/anaerobic approach for prediction of sulphide formation in sewer. Water Science and Technology, 6, 107-115. https://doi.org/10,2166/wst,2000,0099

Jiang, G., Melder, D., Keller, J. y Yuan, Z. (2017). Odor emissions from domestic wastewater: A review. Critical Reviews in Environmental Science and Technology, 47(17), 1581-1611. https://doi.org/10,1080/10643389,2017,1386952

Jinks, A. y Laing, D. G. (1999). A limit in the processing of components in odour mixtures. Perception, 28(3), 395-404. https://doi.org/10,1068/p2898

Kang, J. H, Song, J., Yoo, S. S., Lee, B. J. y Ji, H. W. (2020). Prediction of Odor Concentration Emitted from Wastewater Treatment Plant Using an Artificial Neural Network (ANN). Atmosphere, 11(8), 785-794. https://doi.org/10,3390/atmos11080784

Khanal, S. K. y Huang, J.-C. (2003). ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater. Water Research, 37(9), 2053-2062. https://doi.org/10.1016/S0043-1354(02)00618-8

Kim, H., Lee, H., Choi, E., Choi, I., Shin, T., Im, H. y Ahn, S. (2014). Characterization of odor emission from alternating aerobic and anoxic activated sludge systems using real-time total reduced sulfur analyzer. Chemosphere, 117, 394-401. https://doi.org/10.1016/j.chemosphere.2014.08.008

Lebrero, R., Bouchy, L., Stuetz, R. y Muñoz, R. (2011). Odor Assessment and Management in Wastewater Treatment Plants: A Review. Critical Reviews in Environmental Science and Technology, 41(10), 915-950. https://doi.org/10.1080/10643380903300000

Lewkowska, P., Cieślik, B., Dymerski, T., Konieczka, P. y Namieśnik, J. (2016). Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environmental Research, 151, 573-586. https://doi.org/10,1016/j.envres,2016,08,030

López, C. M., Buitrón, G., García, H. A. y Cervantes F. J. (2017). Tratamiento biológico de aguas residuales: Principios, modelación y diseño. London: IWA https://doi.org/10.2166/9781780409146

Lozada, D. L. y Giraldo, E. A. (2019). Origen de los olores en plantas de tratamiento de aguas residuales. (Trabajo de grado). Escuela Colombiana de Ingeniería Julio Garavito, Bogotá, Colombia. https://repositorio.escuelaing.edu.co/handle/001/981

Metcalf and Eddy. Inc. (2003). Wastewater Engineering: Treatment, Disposal and Reuse. New York: McGraw-Hill Ltd.

Muñoz, R., Sivret, E. C., Parcsi, G., Lebrero, R., Wang, X., Suffet, I. H. y Stuetz, R. M. (2010). Monitoring techniques for odour abatement assessment. Water Research, 44(18), 5129-5149. https://doi.org/10,1016/j.watres,2010,06,013

Oliveira, M. C., Lima, A. P., Figueredo, R. M., Acciari, H. A. y Codaro, E. N. (2017). Um estudo termodinâmico da corrosão dos aços carbono pelo sulfeto de hidrogênio - explorando conceitos de equilíbrio químico. Química Nova, 41(5), 1-9. http://dx.doi.org/10,21577/0100-4042,20170186

Oviedo, E. R., Johnson, D. y Shipley, H. (2011). Evaluation of hydrogen sulphide concentration and control in a sewer system. Environmental Technology, 33(10), 1207-1215. https://doi.org/10.1080/09593330.2011.618932

Park, K., Lee, H., Phelan, S., Liyanaarachchi, S., Marleni, N., Navaratna, D. y Shu, L. (2014). Mitigation strategies of hydrogen sulphide emission in sewer networks: A review. International Biodeterioration & Biodegradation, 95(A), 251-261. https://doi.org/10,1016/j.ibiod,2014,02,013

Rice, E. W., Bridgewater, L. y Association, A. P. H. (2012). Standard methods for the examination of water and wastewater (vol. 10). Washington, D. C.: American Public Health Association.

Ruiz, J. y Moreno, J. (2009). Modelado e identificación del proceso de sulfuro oxidación en el tratamiento biológico de aguas residuales. Congreso Anual 2009 de la Asociación de México de Control Automático. https://amca.mx/memorias/amca2009/articulos/amca2009_75.pdf

Seo, H., Buschhuter, D. y Hummel, T. (2008). Contextual Influences on the Relationship between Familiarity and Hedonicity of Odors. Journal of Food Science, 73(6), 273-278. https://doi.org/10,1111/j,1750-3841,2008,00818.x

Steudel, R. (2020). The chemical sulfur cycle. En. Piet, N. L. (ed.), Environmental Technologies to Treat Sulfur Pollution: principles and engineering (11-53). London: IWA. https://doi.org/10.2166/9781789060966_0011

Suffet, I. H. y Rosenfeld, P. (2007). The anatomy of odour wheels for odours of drinking water, wastewater, compost, and the urban environment. Water Science and Technology, 55(5), 335-344. https://doi.org/10.2166/wst.2007.196

Tagliaferri, F. y Invernizzi, M. (2023). Experimental evaluation on liquid area sources: Influence of wind velocity and temperature on the wind tunnel sampling of VOCs emissions from wastewater treatment plant. Chemosphere, 312(2), 15-97. https://doi.org/10,1016/j.chemosphere,2022,137337

Talaiekhozani, A., Bagheri, M., Goli, A. y Khoozani, M. R. (2016). An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems. Journal of Environmental Management, 170, 186-206. https://doi.org/10,1016/j.jenvman,2016,01,021

Valencia, J., Espinosa, A., Parra, A. y Peña, M. (2011). Percepción del riesgo por emisiones atmosféricas provenientes de la disposición final de residuos sólidos. Revista de Salud Pública, 13(6), 930-941. http://hdl.handle.net/10906/80870

Van Harreveld, A. P. (2001). From odorant formation to odour nuisance: new definitions for discussing a complex process. Water Science and Technology, 44(9), 9-15. https://doi.org/10,2166/wst,2001,0498

Vollertsen, J., Nielsen, A., Jensen, H. S. y Hvitved-Jacobsen, T. (2008). Modeling the formation and fate of odorous substances in collection systems. Water Environmental Research, 80(2), 118-126. https://doi.org/10.2175/106143007X220671

Zhang, L., Schryver, P., Gusseme, B., Muynck, W., Boon, N. y Verstraete W. (2008). Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Resources, 42(1), 1-12. https://doi.org/10,1016/j.watres,2007,07,013

Zhang, Z., Chang, N., Wang, S., Lu, J., Li, K. y Zheng, C. (2022). Enhancing sulfide mitigation via the sustainable supply of oxygen from air-nanobubbles in gravity sewers. Science of The Total Environment, 808, 152203. https://doi.org/10.1016/j.scitotenv.2021.152203

Zhou, Y., Hallis, A. S., Vitko, T. y Suffet, I. H. (2016). Identification, quantification, and treatment of fecal odors released into the air at two wastewater treatment plants. Journal of Environmental Management, 180(1), 257-263. https://doi.org/10.1016/j.jenvman.2016.05.046

Publicado

2024-08-31

Cómo citar

Medidas de control de olores para un tanque homogeneizador de una planta de tratamiento de aguas residuales en Costa Rica. (2024). Uniciencia, 38(1), 1-23. https://doi.org/10.15359/ru.38-1.26

Número

Sección

Artículos científicos originales (arbitrados por pares académicos)

Cómo citar

Medidas de control de olores para un tanque homogeneizador de una planta de tratamiento de aguas residuales en Costa Rica. (2024). Uniciencia, 38(1), 1-23. https://doi.org/10.15359/ru.38-1.26

Comentarios (ver términos de uso)

Artículos más leídos del mismo autor/a

<< < 26 27 28 29 30 31 32 33 34 35 > >>