Clonación y caracterización del gen codificante de la proteína de choque térmico HSP83 de Trypanosoma cruzi
DOI:
https://doi.org/10.15359/ru.38-1.16Palabras clave:
Trypanosoma cruzi, proteína de choque térmico, HSP83, clonación, expresiónResumen
[Objetivo] Tryapanosoma cruzi, un agente causal de la enfermedad de Chagas, es un parásito que presenta una alternancia en su ciclo de vida entre un hospedador invertebrado (triatomino) y uno vertebrado (mamífero). Varios estudios han demostrado que en T. cruzi, HSP83 (homólogo de HSP90) es esencial para la división celular y el control de la respuesta al estrés térmico. Esta investigación se concentró en el estudio de la clonación, la caracterización bioinformática y la expresión del gen de la proteína de choque térmico HSP83 de T. cruzi para estudios posteriores sobre señalización. [Metodología] El ARN fue extraído de epimagostigotes T. cruci (clon EPm6/MOHM/VE/2007/ 6c), utilizando un kit comercial. El ADNc que codifica HSP83 se obtuvo utilizando RT-PCR, a partir del ARNm extraído, para lo cual se diseñaron los cebadores con base en la secuencia HSP83 de la cepa T. cruzi CL Brener. La clonación se realizó usando pGEM®T-Easy y se subclonó en el vector de expresión pQE30. Se efectuó la caracterización bioinformática y de secuencias. El gen se expresó y la proteína recombinante se purificó por cromatografía de afinidad, igual que se identificó por inmunotransferencia. [Resultados] El análisis de secuencia mostró similitud con el gen HSP83 de Trypanosoma cruzi y se observaron dominios HSP, así como epítopos B en la secuencia. Después de 3 horas de inducción con IPTG, se obtuvo una proteína recombinante con un peso aproximado de 83 kDa. La reacción de inmunotransferencia con suero hiperinmune anti-epimastigote de T. cruzi permitió la detección de una sola banda con un peso molecular de aproximadamente 83 kDa. [Conclusiones] Todos los resultados indican que se logró la clonación y caracterización de HSP83 de Trypanosoma cruzi.
Referencias
Alarcón de Noya, B.A., Díaz-Bello, Z., Colmenares, C., Ruiz-Guevara, R., Murillo, L., Muñoz-Calderón, A., Noya, O. (2015). Update on oral Chagas disease outbreaks in Venezuela: epidemiological, clinical and diagnostic approaches. Memórias do Instituto Oswaldo Cruz 110, (3) 77-386. https://doi: 10.1590/0074-02760140285
Angel, S.O., Requena, J.M., Soto, M., Criado, D., Alonso, C. (1996). During canine leishmaniasis a protein belonging to the 83-kDa heat-shock protein family elicits a strong humoral response. Acta Tropica, 62(1), 45-56. https://doi.org/10.1016/S0001-706X(96)00020-4
Añez, N., Crisante, G., Rojas, A., Segninib, S., Espinoza-Álvarez, O., Teixeira, M.M.G. (2020). Update on Chagas disease in Venezuela during the period 2003–2018. Acta Tropica 203, 105310. https://doi.org/10.1016/j.actatropica.2019.105310.
Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G. Xenarios, I. Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal, Nucleic Acids Research. 40 (1), W597-W603, https://dx.doi: 10.1093/nar/gks400.
Boratyn, G.M., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B., Madden, T.L. (2019). Magic-BLAST, an accurate RNA-seq aligner for long and short reads, BMC Bioinformatics. 20, 405. https://dx.doi: 10.1186/s12859-019-2996-x.
Bradford, M.M. (1976). A rapid and sensivity method for quantitation of micrograms quantities of protein utilizing the principle of protein dye binding. Analytical of Biochemistry, 72 (1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Colebrook, A. Lightowlers, M., (1997). Serological reactivity to heat shock protein 70 in patients with hydatid disease. Parasite Immunology, 19, 41-46. https://doi.org/10.1046/j.1365-3024.1997.d01-141.x
Contreras, V.T., Araque, W. Delgado, V. (1994). Trypanosoma cruzi: Metacyclogenesis in vitro. I. Changes in the properties of Metacyclic Tripomastigotes maintained in the laboratory by different methods. Memórias do Instituto Oswaldo Cruz, 89 (2), 253-359. https://doi.org/10.1590/S0074-02761994000200026
Contreras, V.T., De Lima, A.R, Zorrilla, G. (1998). Trypanosoma cruzi: Maintenance in Culture Modify Gene and Antigenic Expression of Metacyclic Trypomastigotes. Memórias do Instituto Oswaldo Cruz. 93 (6),753-60. https://doi.org/10.1590/S0074-02761998000600011
De Andrade, C.R., Kirchhoff, L.V., Donelson, J.E., Otsu, K. (1992). Recombinant Leishmania Hsp90 and Hsp70 are recognized by sera from visceral leishmaniasis patients but not Chagas' disease patients. Journal of Clinical Microbiology, 30(2), 330-335. https://doi.org/10.1128/jcm.30.2.330-335.1992
De Moreno, M.R., Smith, J.F., Smith, R.V. (1985). Silver staining of proteins in polyacrilamide gels: increased sensitivy through a combined blue-silver stain procedure. Analytical of Biochemistry, 151 (2), 466-470. https://doi.org/10.1016/0003-2697(85)90206-4
Dragon, E.A., Sias, S.A., Kato, E.A., Gabe, J.D. (1987). The genome of Trypanosoma cruzi contains a constitutively expressed arranged multicopy gene homologous to major heart shock protein. Molecular Cell Biology, 7, 1271-1275.
El-Sayed, N.M., Myler, P.J., Bartholomeu, D.C., Nilsson, D., Aggarwal, G., Tran, A.N., Ghedin, E., Worthey, E.A., Delcher, A.L., Blandin, G., Westenberger, S.J., Caler, E., Cerqueira, G.C., Branche, C., Haas, B., Anupama, A., Arner, E., Aslund, L., Attipoe, P., Bontempi, E., Bringaud, F., Burton, P., Cadag, E., Campbell, D.A., Carrington, M., Crabtree, J., Darban, H., da Silveira, J.F., de Jong, P., Edwards, K., Englund, P.T., Fazelina, G., Feldblyum, T., Ferella, M., Frasch, A.C., Gull, K., Horn, D., Hou, L., Huang, Y., Kindlund, E., Klingbeil, M., Kluge, S., Koo, H., Lacerda, D., Levin, M.J., Lorenzi, H., Louie, T., Machado, C.R., McCulloch, R., McKenna, A., Mizuno, Y., Mottram, J.C., Nelson, S., Ochaya, S., Osoegawa, K., Pai, G., Parsons, M., Pentony, M., Pettersson, U., Pop, M., Ramirez, J.L., Rinta, J., Robertson, L., Salzberg, S.L., Sanchez, D.O., Seyler, A., Sharma, R., Shetty, J., Simpson, A.J., Sisk, E., Tammi, M.T., Tarleton, R., Teixeira, S., Van Aken, S., Vogt, C., Ward, P.N., Wickstead, B., Wortman, J., White, O., Fraser, C.M., Stuart, K.D. y Andersson, B. (2005). The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science; 309(5733), 409-415. https://doi.org/10.1126/science.1112631
Engman, D.M., Kirchhoff, L.V. Donelson, J.E. (1989). Molecular cloning of Hsp70 mitochondrial member of the Hsp70 family. Molecular Cell Biology, 9 (11), 5163-5168. https://doi.org/10.1128/mcb.9.11.5163-5168.1989
Ferrer, E., González, L., Foster-Cuevas, M., Cortéz, M., Dávila, I., Rodríguez, M., Sciutto, E., Harrison, L.J.S., Parkhouse, R.M.E., y Gárate, T. (2005). Taenia solium: characterization of a small heat shock protein (Tsol-sHSP35.6) and its possible relevance to the diagnosis and pathogenesis of neurocysticercosis. Experimental Parasitology, 110 (1), 1-11. https://doi.org/10.1016/j.exppara.2004.11.014
Folgueira, C. y Requena, J.M. (2007). A post genomic view of the heat shock proteins in kinetoplastids. FEMS. Microbiology Reviews, 31 (4), 359-377. https://doi.org/10.1111/j.1574-6976.2007.00069.x
Graefe, S.E.B., Wiesgigl, M., Gaworski, I., Macdonald, A. Clos J. (2002). Inhibition of Hsp90 in Trypanosoma cruzi induces a strees response but no stage differentiation. Eucaryotic Cell, 11, 936-943. https://doi.org/10.1128/EC.1.6.936-943.2002
Graterol, D., Ramírez, D., Ramos, A., Arteaga, R., Mundaray, O., Pineda, W., Navarro, M., Domínguez, M., De Lima, A. y Contreras, V. (2013). Epimastigogénesis de Trypanosoma cruzi Dm28c en medio ML15HA: análisis proteico, glicoproteico y antigénico. Salus. 17, 12-18.
Hall, T. (2013). BioEdit (v7.1.11). [http://www.mbio.ncsu.edu/BioEdit/bioedit.html]
Huynh, T.V., Young, R., Davis, R.W. (1985). In: DNA cloning: a practical approach (Glover, D.M., de.). IRL Press. Oxford, 1, 49-78.
Jhonson, J.L. (2012). Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochimica et Biophysica Acta, 1823, 607–613. https://doi.org/10.1016/j.bbamcr.2011.09.020
Johnson, K.S., Wells, K., Bock, J.V., Nene, V., Taylor, D.W., Cordingley, J.S. (1989). The 86-kilodalton antigen from Schistosoma mansoni is a heat-shock protein homologous to yeast HSP-90. Molecular and Biochemical Parasitology, 36(1), 19-28. https://doi.org/10.1016/0166-6851(89)90196-5
Kumar, R., Musiyenko, A., Barik, S. (2003). The heat shoch protein Hsp90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Malaria Journal, 2, 30-40. https://doi.org/10.1186/1475-2875-2-30
Laemmli, U.K. (1970). Cleavage of structurals Proteins during the assembly of the head of bacteriophago T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0
Lu, S., Wang, J., Chitsaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Marchler, G.H., Song, J.S., Thanki, N., Yamashita, R.A., Yang, M., Zheng, D.Z.C., Lanczycki, C.J., Marchler-Bauer, A., (2020). CDD/SPARCLE: The Conserved Domain Database in 2020, Nucleic Acids Research. 48, D265-D268. https://doi.org/10.1093/nar/gkz991
Maizels, R.M., Blaxter, M.L., Robertson, B.D., Selkirk, M.E. (1991). Parasite antigens. Parasite genes: a laboratory manual for Molecular parasitology. Cambridge, United States of Amerca: University Press.
Menezes-Souza, D., de Oliveira, T., de Souza, M., Reis-Cunha, J., Pinto, R., Martins, C., Ferraz, E., da Cunha, L., Toshio, R. Castanheira, D. (2014). Epitope mapping of the Hsp83.1 protein of Leishmania braziliensis discloses novel targets for immunodiagnosis of tegumentary and visceral clinical forms of leishmaniasis. Clinical and Vaccine Immunology. 21(7), 949-959. https://doi.org/10.1128/CVI.00151-14
Mitchell, A.L., Attwood, T.K., Babbitt, P.C., Blum, M., Bork, P., Bridge, A., Brown S.D., Chang, H.Y., El-Gebali, S., Fraser, M.I., Gough, J., Haft, D.R., Huang, H., Letunic, I., Lopez, R., Luciani, A., Madeira, F., Marchler-Bauer, A., Mi, H., Natale, D.A., Necci, M., Nuka, G., Orengo, C., Pandurangan, A.P., Paysan-Lafosse, T., Pesseat, S., Potter, S.C., Qureshi, M.A., Rawlings, N.D., Redaschi, N., Richardson, L.J., Rivoire, C., Salazar, G.A., Sangrador-Vegas, A., Sigrist, C.J.A., Sillitoe, I., Sutton, G.G., Thanki, N., Thomas, P.D., Tosatto, S.C.E., Yong, S.Y., Finn, R.D. (2019). InterPro in 2019: improving coverage, classification and access to protein sequence annotations, Nucleic Acids Research. 47, D351–D360. https://dx.doi.org/10.1093/nar/gky1100
Moser, D., Doumbo, O., Klinkrt, M., (1990). The humoral response to heat shock protein 70 in human and murine Schistosomiasis mansoni. Parasite Immunology, 12, 341-352. https://doi.org/10.1111/j.1365-3024.1990.tb00973.x
Mottram, J.C., Murphy, W.J., Agabian, N. (1989). A transcriptional analysis of the Trypanosoma brucei Hsp83 gene cluster. Molecular and Biochemical Parasitology, 37, 115-128. https://doi.org/10.1016/0166-6851(89)90108-4
Nadeau, K., Sullivan, M.A., Bradley, M., Engman, D.M., Walsh, C.T. (1992). 83-kilodalton heat shock proteins of trypanosomes are potent peptide-stimulated ATPases. Protein Science, 1(8), 970-979. https://doi.org/10.1002/pro.5560010802
Nene, V., Dunne, D.W., Johnson, K.S., Taylor, D.W. y Cordingley, J.S. (1986). Sequence and expression of a major egg antigen from Schistosoma mansoni. Homologies to heat shock proteins and alpha-crystallins. Molecular and Biochemical Parasitology, 21(2), 179-188. https://doi.org/10.1016/0166-6851(86)90021-6
Obregon-Henao, A., Gil, D.L., Gómez, D.I., Sanzón, F., Teale, J.M., Restrepo, B. (2001). The role of N-linked carbohydrates in the antigenicity of Taenia solium metacestode glycoproteins of 12, 16 and 18 kD. Molecular and Biochemical Parasitology 114 (2), 209-215. https://doi.org/10.1016/S0166-6851(01)00256-0
Pagni, M., Iseli, C., Junier, T., Falquet, L., Jongeneel, V., Bucher, P. (2001). TrEST, trGEN and Hits: Access to databases of predicted protein sequences. Nucleic Acids Research 29 (1), 148-151. https://doi.org/10.1093/nar/29.1.148
Pallavi, R., Roy, N., Nageshan, R.K., Talukdar, P., Pavithra, S.R., Reddy, R., Venketesh, S., Kumar, R., Gupta, A.K., Singh, R.K., Yadav, S.C., Tatu, U. (2010). Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. Journal of Biological Chemistry, 285(49), 37964-37975. https://doi.org/10.1074/jbc.M110.155317
Polla, B. (1991). Heat shock proteins in host-parasite interactions. Immunology Today, 12(3), A38-A41. https://doi.org/10.1016/S0167-5699(05)80011-8
Quijada, L., Requena, J.M., Soto, M., Gomez, L.C., Guzmán, F., Patarroyo, M.E., Alonso, C. (1996). Mapping of the linear antigenic determinants of the Leishmania infantum hsp70 recognized by leishmaniasis sera. Immunology Letters, 52(2-3), 73-79. https://doi.org/10.1016/0165-2478(96)02585-0
Requena, J.M., Soto, M., Guzmán, F., Maekelt, A., Noya, O., Patarroyo, M.E., Alonso, C. (1993). Mapping of antigenic determinants of the T. cruzi hsp70 in chagasic and healthy individuals. Molecular Immunology, 30(12), 1115-1121. https://doi.org/10.1016/0161-5890(93)90158-8
Rey-Ladino, J.A., Joshi, P.B., Singh, B., Gupta, R., Reiner, N.E. (1997). Leishmania major: molecular cloning, sequencing, and expression of the heat shock protein 60 gene reveals unique carboxy terminal peptide sequences. Experimental Parasitology, 85(3), 249-263. https://doi.org/10.1006/expr.1996.4137
Rondinelli, E. (1994). Conservation of heat-shock proteins in Trypanosoma cruzi. Parasitology Today, 10(5), 172-176. https://doi.org/10.1016/0169-4758(94)90020-5
Rothstein, N., Yates, J., Higashi, G. Rajan, T. (1989). Onchocerca volvulus heat shock protein 70 is a major immunogen in amicrofilaremic individuals from a filariasis-endemic area. Molecular and Biochemical Parasitology, 33(3), 229-236. https://doi.org/10.1016/0166-6851(89)90084-4
Saha, S., Bhasin, M., Raghava, G.P.S. (2005). Bcipep: A database of B-cell epitopes, BMC Genomics, 6, 79. https://doi.org/10.1186/1471-2164-6-79
Shapira, M., Pinelli, E. (1989). Heat-shock protein 83 of Leishmania mexicana amazonensis is an abundant cytoplasmic protein with a tandemly repeated genomic arrangement. European Journal of Biochemestry, 185 (2), 231-236. https://doi.org/10.1111/j.1432-1033.1989.tb15107.x
Skeiky, Y.A., Benson, D., Guderian, J.A., Whittle, J.A., Bacelar, O., Carvalho, E.M., y Reed, S.G. (1995). Inmune responses of leishmaniasis patients to heat shock proteins of Leishmania species and humans. Infection and Immunity, 63 (10), 4105-4114. https://doi.org/10.1128/iai.63.10.4105-4114.1995
Silva, K.P., Seraphim, T.V. Borges, J.C. (2013). Structural and functional studies of Leishmania braziliensis Hsp90. Biochimica et Biophysica Acta, 1834(1), 351-361. https://doi.org/10.1016/j.bbapap.2012.08.004
Towbin, H., Staehelin, T., Gordon, J. (1979). Electrophoretic transfer of proteinsfrom polyacrylamide gels tonitrocelulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, 76(9), 4350-4354. https://doi.org/10.1073/pnas.76.9.4350
Urményi TP, Silva R, Rondinelli E. (2014). The heat shock proteins of Trypanosoma cruzi. Subcellular Biochemistry, 74, 119-135. https://doi.org/10.1007/978-94-007-7305-9_5
Wallace, G.R., Ball, A.E., MacFarlane, J., el Safi, S.H., Miles, M.A., Kelly, J.M. (1992). Mapping of a visceral leishmaniasis-specific immunodominant B-cell epitope of Leishmania donovani Hsp70. Infection and Immunity, 60(7), 2688-2693. https://doi.org/10.1128/iai.60.7.2688-2693.1992
WHO. (2023) Chagas Disease (American trypanosomiasis) Fact sheet. World Health Organization, Geneva. http://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis).
Zhang, M., Hisaeda, H., Kano, S., Matsumoto, Y., Hao, Y.P., Looaresuwan, S, Aikawa, M., Himeno, K. (2001). Antibodies specific for heat shock proteins in human and murine malaria. Microbes and Infection, 3(5), 363-367. https://doi.org/10.1016/S1286-4579(01)01391-0
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 compartidos: Revista y Autores(as) (CC-BY-NC-ND)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
1. Los autores garantizan a la revista el derecho de ser la primera publicación del trabajo al igual que licenciado bajo una Creative Commons Attribution License que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
2. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
3. Los autores han afirmado poseer todos los permisos para usar los recursos que utilizaron en el artículo (imágenes, tablas, entre otros) y asumen la responsabilidad total por daños a terceros.
4. Las opiniones expresadas en el artículo son responsabilidad de los autores y no necesariamente representan la opinión de los editores ni de la Universidad Nacional.
Revista Uniciencia y todas sus producciones se encuentran bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
No existe costo por acceso, revisión de propuestas ni publicación para autores y lectores.