Análisis del razonamiento matemático de los estudiantes en la resolución de problemas de probabilidad a juzgar por los estilos de aprendizaje: el convergente

Autores/as

DOI:

https://doi.org/10.15359/ru.38-1.32

Palabras clave:

Razonamiento matemático, Problema de probabilidad, Estilos de aprendizaje

Resumen

[Antecedentes] Los estudiantes enfrentan varios desafíos al intentar resolver problemas de probabilidad, uno de los cuales se relaciona con el razonamiento sobre el escenario del problema dado. Este fenómeno puede surgir debido a variaciones en sus estilos de aprendizaje. [Objetivo] Por lo tanto, el presente estudio tuvo como objetivo examinar la capacidad de razonamiento de los estudiantes cuando se enfrentan a problemas de probabilidad, centrándose en aquellos con estilos de aprendizaje convergentes. [Método] Se empleó un método cualitativo, para el cual se invitó a dos estudiantes, con un estilo de aprendizaje convergente, a resolver tareas de razonamiento. En esta investigación se utilizaron tres instrumentos: cuestionario de estilo de aprendizaje, tareas de razonamiento matemático y entrevistas semiestructuradas. Los datos de la investigación se analizaron mediante la reducción y visualización de datos. [Resultados] Los hallazgos del estudio revelaron que, al resolver problemas de probabilidad, los convergentes (estudiantes con un estilo de aprendizaje convergente) aplicaron, principalmente, razonamiento imitativo, en el que mostraron una tendencia a: (1) articular de manera precisa y completa la información conocida de una pregunta e identificar correctamente la pregunta que se hace; (2) poseen una comprensión conceptual de la probabilidad, pero brindan explicaciones inexactas sobre las secuencias aritméticas. Aunque podían idear estrategias de resolución de problemas, su articulación carecía de precisión; (3) utilizar el concepto de probabilidad y emplear estrategias de resolución de problemas para resolver el problema dado y explicar los pasos necesarios para alcanzar la solución; (4) derivar respuestas a partir de estrategias de resolución de problemas y sacar conclusiones precisas, mostrando, a menudo, una tendencia a confiar en sus respuestas y, posteriormente, verificarlas. [Conclusiones] Los estudiantes con estilos de aprendizaje convergentes utilizaron predominantemente el razonamiento imitativo al resolver problemas de probabilidad.

Referencias

Adu-Gyamfi, K., Stiff, L. V., & Bossé, M. J. (2012). Lost in Translation: Examining Translation Errors Associated With Mathematical Representations. School Science and Mathematics, 112(3), 159–170. https://doi.org/10.1111/j.1949-8594.2011.00129.x

Boesen, J., Lithner, J., & Palm, T. (2010). The relation between types of assessment tasks and the mathematical reasoning students use. Educational Studies in Mathematics, 75(1), 89–105. https://doi.org/10.1007/s10649-010-9242-9

Gasteiger, H., Bruns, J., Benz, C., Brunner, E., & Sprenger, P. (2020). Mathematical pedagogical content knowledge of early childhood teachers: a standardized situation-related measurement approach. ZDM - Mathematics Education, 52(2), 193–205. https://doi.org/10.1007/s11858-019-01103-2

Granberg, C., & Olsson, J. (2015). ICT-supported problem solving and collaborative creative reasoning: Exploring linear functions using dynamic mathematics software. Journal of Mathematical Behavior, 37, 48–62. https://doi.org/10.1016/j.jmathb.2014.11.001

Hackenberg, A. J., & Lee, M. Y. (2015). Relationships between students’ fractional knowledge and equation writing. Journal for Research in Mathematics Education, 46(2), 196–243. https://doi.org/10.5951/jresematheduc.46.2.0196

Herbert, S., & Pierce, R. (2012). Revealing educationally critical aspects of rate. Educational Studies in Mathematics, 81(1), 85–101. https://doi.org/10.1007/s10649-011-9368-4

Hirschfeld-Cotton, K. (2008). Mathematical Communication, Conceptual Understanding, and Students’ Attitudes Toward Mathematics. Action Research Projects, 4.

İDİL, Ş., GÜLEN, S., & DÖNMEZ, İ. (2024). What Should We Understand from PISA 2022 Results? Journal of STEAM Education, 7(1). https://doi.org/10.55290/steam.1415261

Ikram, M., Purwanto, Nengah Parta, I., & Susanto, H. (2020). Mathematical reasoning required when students seek the original graph from a derivative graph. Acta Scientiae, 22(6), 45–64. https://doi.org/10.17648/acta.scientiae.5933

Johansson, H. (2016). Mathematical Reasoning Requirements in Swedish National Physics Tests. International Journal of Science and Mathematics Education, 14(6). https://doi.org/10.1007/s10763-015-9636-3

Kang, W. (2015). Implication from Polya and Krutetskii. In S. J. Cho (Ed.), Selected Regular Lectures from the 12th International Congress on Mathematical Education (pp. 405–416). Springer International Publishing Switzerland 2015. https://doi.org/10.1007/978-3-319-17187-6

Khozaei, S. A., Zare, N. V., Moneghi, H. K., Sadeghi, T., & Taraghdar, M. M. (2022). Effects of quantum-learning and conventional teaching methods on learning achievement, motivation to learn, and retention among nursing students during critical care nursing education. Smart Learning Environments, 9(1). https://doi.org/10.1186/s40561-022-00198-7

Lee, K. H. (2017). Convergent and divergent thinking in task modification: a case of Korean prospective mathematics teachers’ exploration. ZDM - Mathematics Education, 49(7), 995–1008. https://doi.org/10.1007/s11858-017-0889-x

Lee, M. Y., & Hackenberg, A. J. (2014). Relationships Between Fractional Knowledge and Algebraic Reasoning: the Case of Willa. International Journal of Science and Mathematics Education, 12(4), 975–1000. https://doi.org/10.1007/s10763-013-9442-8

Lithner, J. (2003). Students ’ Mathematical Reasoning in University Textbook Exercises. Educational Studies in Mathematics, 52(1), 29–55. http://www.jstor.org/stable/3483334

Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67(3), 255–276. https://doi.org/10.1007/s10649-007-9104-2

Lithner, J. (2011). University Mathematics Students’ Learning Difficulties. Education Inquiry, 2(2), 289–303. https://doi.org/10.3402/edui.v2i2.21981

Lithner, J. (2017). Principles for designing mathematical tasks that enhance imitative and creative reasoning. ZDM - Mathematics Education, 49(6), 937–949. https://doi.org/10.1007/s11858-017-0867-3

Marufi, Ilyas, M., Winahyu, & Ikram, M. (2021). An Implementation of Ethno-STEM to Enhance Conceptual Understanding. Al-Jabar: Jurnal Pendidikan Matematika, 12(1). https://doi.org/10.24042/ajpm.v12i1.7834

Marufi, M., Ilyas, M., Ikram, M., & Kaewhanam, P. (2022). Exploration of high school students ’ reasoning in solving trigonometric function problems. 13(2), 231–249. https://doi.org/10.24042/ajpm.v13i2.12972

Mata-Pereira, J., & da Ponte, J. P. (2017). Enhancing students’ mathematical reasoning in the classroom: teacher actions facilitating generalization and justification. Educational Studies in Mathematics, 96(2), 169–186. https://doi.org/10.1007/s10649-017-9773-4

Miles, M. B., Huberman, A. M., & Saldana, J. (2014). Qualitative Data Analysis: A Methods Sourcebook (Third Edit). SAGE Publications, Inc.

Miles, M. B., Huberman, A. M., & Saldaña, J. (2018). Qualitative data analysis: A methods sourcebook. Sage publications.

Morrison, J., Frost, J., Gotch, C., McDuffie, A. R., Austin, B., & French, B. (2020). Teachers’ Role in Students’ Learning at a Project-Based STEM High School: Implications for Teacher Education. International Journal of Science and Mathematics Education, 19(1), 1103-1123. https://doi.org/10.1007/s10763-020-10108-3

OECD. (2018). Programme for International Students Assesment (PISA) Result From PISA 2018.

PISA. (2023). PISA 2022 Results Factsheets Indonesia. The Language of Science Education, 1.

Pitta-Pantazi, D., & Christou, C. (2009). Cognitive styles, dynamic geometry and measurement performance. Educational Studies in Mathematics, 70(1), 5–26. https://doi.org/10.1007/s10649-008-9139-z

Putri, N. U., Mukhini, & Jazwinarti. (2014). Kemampuan Penalaran Matematis Siswa Kelas XI Ipa SMAN 2 Painan Melalui Penerapan Pembelajaran Think Pair Square. Jurnal Pendidikan Matematika, 3(1).

Savard, A., & Polotskaia, E. (2017). Who’s wrong? Tasks fostering understanding of mathematical relationships in word problems in elementary students. ZDM - Mathematics Education, 49(6), 823–833. https://doi.org/10.1007/s11858-017-0865-5

Singer, F. M., Voica, C., & Pelczer, I. (2017). Cognitive styles in posing geometry problems: implications for assessment of mathematical creativity. ZDM - Mathematics Education, 49(1), 37–52. https://doi.org/10.1007/s11858-016-0820-x

Szabo, Z. K., Körtesi, P., Guncaga, J., Szabo, D., & Neag, R. (2020). Examples of problem-solving strategies in mathematics education supporting the sustainability of 21st-century skills. Sustainability (Switzerland), 12(23), 1–28. https://doi.org/10.3390/su122310113

Tohir, M. (2019). Hasil PISA Indonesia Tahun 2018 Turun Dibanding Tahun 2015 (Indonesia’s PISA Results in 2018 are Lower than 2015). Open Science Framework, 2. https://doi.org/10.31219/osf.io/pcjvx

Publicado

2024-08-31

Número

Sección

Artículos científicos originales (arbitrados por pares académicos)

Comentarios (ver términos de uso)