Métodos de reducción de dimensionalidad: Análisis comparativo de los métodos APC, ACPP y ACPK
DOI:
https://doi.org/10.15359/ru.30-1.7Palabras clave:
Reducción de dimensionalidad, nube de datos, problema de la preimagen.Resumen
Los métodos de reducción de dimensionalidad son algoritmos que mapean el conjunto de los datos a subespacios derivados del espacio original, de menor dimensión, que permiten hacer una descripción de los datos a un menor costo. Por su importancia, son ampliamente usados en procesos asociados a aprendizaje de máquina. Este artículo presenta un análisis comparativo sobre los métodos de reducción de dimensionalidad: ACP, ACPP y ACPK. Se realizó un experimento de reconstrucción de los datos de formas vermes, por medio de estructuras de hitos ubicados en el contorno de su cuerpo, con los métodos con distinto número de componentes principales. Los resultados evidenciaron que todos los métodos pueden verse como procesos alternativos. Sin embargo, por el potencial de análisis en el espacio de características y por el método del cálculo de su preimagen presentado, el ACPK muestra un mejor método para el proceso de reconocimiento y extracción de patronesReferencias
Amini, A. A., Chen, Y., Elayyadi, M., & Radeva, P. (2001). Tag surface reconstruction and tracking of myocardial beads from SPAMM-MRI with parametric B-spline surfaces. Medical Imaging, IEEE Transactions on, 20(2), 94-103. Recuperado de doi http://dx.doi.org/10.1109/42.913176
Arroyo, J. y Alvarado, J. (2014). A new variant of Conformal Map Approach method for computing the preimage in Input Space. Recent Advances in Computer Engineering, Communications and Information Technology, 301-304 Recuperado de http://www.wseas.us/e-library/conferences/2014/Tenerife/INFORM/INFORM-00.pdf
Honeine, P. y Richard, C. (Marzo, 2011). Preimage Problem in Kernel-Based Machine Learning. IEEE Signal Processing Magazine, 28 (2), 77-88. Recuperado de http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5714388&isnumber=5714377
Lee, J. y Verleysen, M. (2007). Nonlinear Dimensionality Reduction. Springer. Science & Business. Estados Unidos. doi http://dx.doi.org/10.1007/978-0-387-39351-3
Shlens, J. (2005). A Tutorial on Principal Component Analysis. Systems Neurobiology Laboratory, Salk Institute for Biological Studies. Recuperado de http://arxiv.org/pdf/1404.1100v1.pdf
Scholkopf, B., Smola, A. y Müller, K. (1999). Kernel principal component analysis. Advances in Kernel Methods-Support vector Learning, 327-352. Recuperado de http://pca.narod.ru/scholkopf_kernel.pdf
Tipping, M. y Bishop, M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society. Series B, 61 (3), 611-622. Recuperado de
doi http://dx.doi.org/10.1111/1467-9868.00196
Van der Maaten, L., Postma, E. y Van den Herik, H. (2009). Dimensionality Reduction: A Comparative Review. Technical Report TiCC TR. Recuperado de http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.125.6716&rep=rep1&type=pdf
Publicado
Número
Sección
Licencia
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
1. Los autores garantizan a la revista el derecho de ser la primera publicación del trabajo al igual que licenciado bajo una Creative Commons Attribution License que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
2. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
3. Los autores han afirmado poseer todos los permisos para usar los recursos que utilizaron en el artículo (imágenes, tablas, entre otros) y asumen la responsabilidad total por daños a terceros.
4. Las opiniones expresadas en el artículo son responsabilidad de los autores y no necesariamente representan la opinión de los editores ni de la Universidad Nacional.
Revista Uniciencia y todas sus producciones se encuentran bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
No existe costo por acceso, revisión de propuestas ni publicación para autores y lectores.