Response to Boric Acid and Light in the Number and Biomass of Potato Microtubers Cv. “Floresta”

Autores/as

  • José Antonio García-García de Cultivo de Tejidos Vegetales, Escuela de Ciencias Agrarias, & Escuela de Ciencias Biológicas, Universidad Nacional, Costa Rica
  • José Bernal Azofeifa-Bolaños Instituto de Investigación y Servicios Forestales, Universidad Nacional, Costa Rica

DOI:

https://doi.org/10.15359/ru.31-2.9

Palabras clave:

6-bencilaminopurine, microtuberization, Solanum tuberosum, tissue culture.

Resumen

In order to understand the performance of Solanum tuberosum L. “Floresta” in producing microtubers, the effect of four concentrations of boric acid (6.2 mg l-1, 7.75 mg l-1, 9.3 mg l-1, and 10.85 mg l-1) under two conditions—1) 8 hour dark and 2) 16 hour light photoperiod and 8 hour dark—was evaluated under in vitro culture conditions. Full-strength Murashige and Skoog medium was used as a control. The data analysis for the number and biomass of microtubers were significant for the condition (p ≤ 0.05). Concerning the concentration of boric acid and the interaction between factors, a significant difference was obtained for biomass (p ≤ 0.05). In dark conditions, a greater number of microtubers was obtained, although the biomass was lower compared to the light conditions where the biomass was higher, and the number of microtubers was lower. A concentration of 9.3 mg l-1 of boric acid in both types of conditions was the best treatment to produce a greater number and more biomass of microtubers. The differences identified in this work with regards to the number and biomass of microtubers were probably the combined result of genotype and specific culture conditions. Even considering this, the use of lighting conditions is proposed to induce larger and greener microtubers.

Referencias

Aksenova, N. P., Konstantinova, T. N., Golyanovskaya, S. A., Sergeeva, L. I., & Romanov, G. A. (2012). Hormonal regulation of tuber formation in potato plants. Russian Journal of Plant Physiology, 59(4), 451–466. http://dx.doi.org/10.1134/S1021443712040024

Aksenova, N. P., Konstantinova, T. N., Lozhnikova, V. N., Golyanovskaya, S. A., Gukasyan, I. A., Gatz, C., & Romanov, G. A. (2005). Photoperiodic and Hormonal Control of Tuberization in Potato Plants Transformed with the PHYB Gene from Arabidopsis. Russian Journal of Plant Physiology, 52(5), 623–628. http://dx.doi.org/10.1007/s11183-005-0092-8

Aksenova, N. P., Konstantinova, T. N., Lozhnikova, V. N., Golyanovskaya, S. A., & Sergeeva, L. I. (2009). Interaction between day length and phytohormones in the control of potato tuberization in the in vitro culture. Russian Journal of Plant Physiology, 56(4), 454–461. http://dx.doi.org/10.1134/S1021443709040037

Barquero, M., Gómez, L., Brenes, A., & Valverde, R. (2001). El tamaño del pote en la producción de semilla pre-básica de papa en invernadero. Agronomía Costarricense, 25(1), 61–66. Retrieved from http://www.mag.go.cr/rev_agr/v25n01_061.pdf

Cañal, M., Rodríguez, R., Fernández, B., Sánchez-Tames, R., & Majada, J. (2001). Fisiología del cultivo in vitro. Biotecnología Vegetal. 1(1), 3–9. Retrieved from https://revista.ibp.co.cu/index.php/BV/article/view/59

Desjardins, Y. (1995). Photosynthesis in vitro - on the factors regulating CO2 assimilation in micropropagation systems. Acta Horticulturae (ISHS), 393, 45–62. Retrieved from http://www.actahort.org/books/393/393_5.htm. http://dx.doi.org/10.17660/ActaHortic.1995.393.5

Dhital, S. P., & Lim, H. T. (2012). Microtuberization of potato (Solanum tuberosum L.) as influenced by supplementary nutrients, plant growth regulators, and in vitro culture conditions. Potato Research, 55(2), 97–108. http://dx.doi.org/10.1007/s11540-012-9212-y

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2008). Infostat, Versión 2008, Grupo Infostat, Universidad Nacional de Córdoba, Argentina

Dobránszki, J., Magyar-Tábori, K., & Hudák, I. (2008). In vitro Tuberization in Hormone-Free Systems on Solidified Medium and Dormancy of Potato Microtubers. Fruit, Vegetable and Cereal Science and Biotechnology, 2(1), 82–94. Retrieved from http://www.globalsciencebooks.info/JournalsSup/images/0812/FVCSB_2(SI1)82-94o.pdf

Dobránszki, J., Tábóri, K. M., & Ferenczy, A. (1999). Light and genotype effects on in vitro tuberization of potato plantlets. Potato Research, 42(3-4), 483–488. http://dx.doi.org/10.1007/BF02358164

Donnelly, D. J., Coleman, W. K., & Coleman, S. E. (2003). Potato microtuber production and performance: A review. American Journal of Potato Research, 80(2), 103–115. http://dx.doi.org/10.1007/BF02870209

Ewing, E. E., Simko, I., Omer, E. A., & Davies, P. J. (2004). Polygene mapping as a tool to study the physiology of potato tuberization and dormancy. American Journal of Potato Research, 81(4), 281–289. http://dx.doi.org/10.1007/BF02871770

Garner, N., & Blake, J. (1989). The Induction and Development of Potato Microtubers In Vitro on Media Free of Growth Regulating Substances. Annals of Botany, 63(6): 663-674. https://doi.org/10.1093/oxfordjournals.aob.a087795

Gopal, J., Chamail, A., & Sarkar, D. (2004). In vitro production of microtubers for conservation of potato germplasm: effect of genotype, abscisic acid, and sucrose. In vitro Cellular & Developmental Biology. Plant., 40(5), 485–490. http://dx.doi.org/10.1079/IVP2004540

Gopal, J., Minocha, J. L., & Dhaliwal, H. S. (1998). Microtuberization in potato (Solanum tuberosum L.). Plant Cell Reports, 17(10), 794–798. http://dx.doi.org/10.1007/s002990050485

Gutiérrez-Soto, M., & Torres-Acuña, J. (2013). Síntomas asociados a la deficiencia de boro en la palma aceitera (Elaeis guineensis Jacq.) en Costa Rica. Agronomía Mesoamericana. 24(2), 441–449. http://dx.doi.org/10.15517/am.v24i2.12547

Hoque, M. E. (2010). In vitro tuberization in potato (Solanum tuberosum L .). Plant Omics Journal, 3(1), 7–11. Retrieved from http://www.pomics.com/hoque_3_1_2010_7_11.pdf

Lakhotia, N., Joshi, G., Bhardwaj, A. R., Katiyar-Agarwal, S., Agarwal, M., Jagannath, A., Kumar, A. (2014). Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing. BMC Plant Biology, 14(1), 6. http://dx.doi.org/10.1186/1471-2229-14-6

Li, H. Z., Zhou, W. J., Zhang, Z. J., Gu, H. H., Takeuchi, Y., & Yoneyama, K. (2005). Effect of γ-radiation on development, yield and quality of microtubers in vitro in Solanum tuberosum L. Biologia Plantarum, 49(4), 625–628. http://dx.doi.org/10.1007/s10535-005-0062-1

López, H. A., Sánchez-Rojo, S., Mora-Herrera, M. E., & Martínez-Gutierrez, R. (2012). Micro-Tuberization as a Long Term Effect of Hydrogen Peroxide on Potato Plants. American Journal of Potato Research, 89(3), 240–244. http://dx.doi.org/10.1007/s12230-011-9219-y

Motallebi, A., Kazemiani, S., & Yarmohamadi, F. (2013). Effect of sugar/osmotica levels on in vitro microtuberization of potato (Solanum tuberosum L.). Russian Agricultural Sciences, 39(2), 112–116. http://dx.doi.org/10.3103/S1068367413020146

Park, S. W., Jeon, J. H., Kim, H. S., Hong, S. J., Aswath, C., & Joung, H. (2009). The effect of size and quality of potato microtubers on quality of seed potatoes in the cultivar “Superior.” Scientia Horticulturae, 120(1), 127–129. http://dx.doi.org/10.1016/j.scienta.2008.09.004

Pruski, K., Astatkie, T., & Nowak, J. (2002). Jasmonate effects on in vitro tuberization and tuber bulking in two potato cultivars (Solanum tuberosum L.) under different media and photoperiod conditions. In vitro Cellular & Developmental Biology - Plant, 38(2), 203–209. doi:10.1079/IVP2001265

Puzina, T. I. (2004). Effect of Zinc Sulfate and Boric Acid on the Hormonal Status of Potato Plants in Relation to Tuberization. Russian Journal of Plant Physiology, 51(2), 209–215. http://dx.doi.org/10.1023/B:RUPP.0000019216.92202.4a

Seabrook, J. E. (2005). Light effects on the growth and morphogenesis of potato (Solanum tuberosum) in vitro: A Review. American Journal of Potato Research, 82(5), 353–367. http://dx.doi.org/10.1007/BF02871966

Sharma, A. K., Venkatasalam, E. P., & Singh, R. K. (2011). Micro-tuber production behaviour of some commercially important potato (Solanum tuberosum) cultivars. Indian Journal of Agricultural Sciences, 81(11), 1008–1013.

Sharma, S., Chanemougasoundharam, A., Sarkar, D., & Pandey, S. K. (2004). Carboxylic acids affect induction, development and quality of potato (Solanum tuberosum L.) microtubers grown in vitro from single-node explants. Plant Growth Regulation, 44(3), 219–229. http://dx.doi.org/10.1007/s10725-004-5827-6

Tadesse, M., Lommen, W. J. M., & Struik, P. C. (2001). Development of micropropagated potato plants over three phases of growth as affected by temperature in different phases. NJAS - Wageningen Journal of Life Sciences, 49(1), 53–66. http://dx.doi.org/10.1016/S1573-5214(01)80015-4

Tanaka, M., & Fujiwara, T. (2008). Physiological roles and transport mechanisms of boron: perspectives from plants. Pflügers Archiv - European Journal of Physiology, 456(4), 671–7. http://dx.doi.org/10.1007/s00424-007-0370-8

Vásquez, V., Montero-Astúa, M., & Rivera, C. (2004). Efecto de la infección de PVX y PVY en la producción de Solanum tuberosum en invernadero con los cultivares Floresta y Granola. Manejo Integrado de Plagas y Agroecología (Costa Rica), (73), 57–63.

Xu, X., van Lammeren, A., Vermeer, E., & Vreugdenhil, D. (1998). The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology, 117(2), 575–584. http://dx.doi.org/10.1104/pp.117.2.575

Zhang, Z., Mao, B., Li, H., Zhou, W., Takeuchi, Y., & Yoneyama, K. (2005). Effect of salinity on physiological characteristics, yield and quality of microtubers in vitro in potato. Acta Physiologiae Plantarum, 27(4), 481–489. http://dx.doi.org/10.1007/s11738-005-0053-z

Publicado

2017-07-29

Número

Sección

Artículos científicos originales (arbitrados por pares académicos)

Comentarios (ver términos de uso)

Artículos más leídos del mismo autor/a