Strategies for the management of chronic wounds complicated by multi-resistant bacterium biofilm in equines: bibliographic review, diagnosis and treatment protocol
DOI:
https://doi.org/10.15359/rcv.42-1.1Keywords:
chronic wounds, multi-resistance, biofilm, alternative antimicrobials, equinesAbstract
The purpose of this article is to discuss some relevant facts found in several clinical cases of antibiotic resistance in equines to raise awareness about the problematic, make a literature review on the topic and propose therapeutical alternatives different to the use antibiotics currently available. The fistulous tract exemplifies a chronic wound that presents itself as a subcutaneous tunnel exiting through the skin with presence of contaminated secretion. When the tract is infected with multi-resistant bacteria and there is biofilm presence, the medical treatment is, therefore, a lot more complicated, prolonged in time and expensive due to the cost of diagnostic procedures, veterinary management, medicines, and hospital boarding, which is often required. In addition, normally, the expected zootechnical use of the animal cannot be carried out until it heals, and its price is devalued due to the injury. The role of bacterial biofilms in chronic infected wounds is addressed and due to the difficulty in identifying them, it is advisable to look for specific clinical signs suggestive of the problem and apply the “Percival´s Diagnostic Algorithm” for the detection of biofilm. Treatment should be based on repeated debridement and the application of topical antimicrobial therapy without prescribing systemic antibiotics unless there are signs of generalized infection. A treatment protocol to improve the management of the injury and the use of alternative antiseptic substances to current conventional antibiotics are discussed, as well as the application of “ONE HEALTH” concepts to deal with such problem.
References
Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. (2022). Resistencia Antibacteriana. https://www.argentina.gob.ar/anmat/ram/organismos
Alós, J. I. (2015). Resistencia bacteriana a los antibióticos: Una crisis global [Antibiotic resistance: A global crisis]. Enfermedades infecciosas y microbiología clínica, 33(10), 692–699. https://doi.org/10.1016/j.eimc.2014.10.004
Alverdy J.C., Hyman, N., & Gilbert, J. (2020). Re-examining causes of surgical site infections following elective surgery in the era of asepsis. The Lancet Infectious Diseases, 20(3), e38-e43. https://doi.org/10.1016/S1473-3099(19)30756-X
AMR Action Fund. (2022). Next Generation Antibiotics. https://www.amractionfund.com/amr-innovation-challenge
Anglen, J., Gainor, B., Simpson, W., & Christensen, G. (2003). The use of detergent irrigation for musculoskeletal wounds. International Orthopaedics, 27(1), 40-46. https://doi.org/10.1007/s00264-002-0398-5
Armstrong, D., Bauer, K., Greg Bohn, G., Carter, M., Snyder, R., & Serena, T. (2020). Principles of best diagnostic practice in tissue repair and wound healing: an expert consensus. Diagnostics, 11(1), 50. https://doi.org/10.3390/diagnostics11010050
Attinger, C., & Wolccott, R. (2012). Clinically addressing Biofilm in Chronic Wounds. Advances in Wound Care (New Rochelle), 1(3), 127-132. https://doi.org/10.1089/wound.2011.0333
Atkin, L., & Rippon, M. (2016). Autolysis: mechanisms of action in the removal of devitalised tissue. British Journal of Nursing, 25(Supl. 20), S40-S47. https://doi.org/10.12968/bjon.2016.25.20.S40
Asma, S.T., Imre, K., Morar, A., Herman, V., Acaroz, U., Mukhtar, H., Arslan, D., Shah, S., & Gerlach, R. (2022). An Overview of Biofilm formation-combatin strategies and mechanisms of action of antibiofilm agents. Life, 12(8), 1110. https://doi.org/10.3390/life12081110
Auer, J.A., & Kummerle, J.A. (2019). Surgical Methods. En Auer, Stick, Kummerle & Prange (Eds.), Equine Surgery (5ta ed., pp. 123-300). Elsevier. https://doi.org/10.1016/C2015-0-05672-6
Babalska, Z., Korbecka, M., & Karpiński, T. (2021). Wound Antiseptics and European Guidelines for Antiseptic Application in Wound Treatment. Pharmaceuticals, 14(12), 1253. https://doi.org/10.3390/ph14121253
Baker, P., Hill, P., Snarr, B., Alnabelseya, N., Pestrak, M., Lee, M., Jennings, L., Tam, J., Melnyk, R., Parsek , M., Sheppard, D., Wozniak ,D., & Howell, L. (2016). Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Science Advances, 2(5), e1501632. https://doi.org/10.1126/sciadv.1501632
Banat, I.M., De Rienzo, M.A.D. & Quinn, G.A. (2014). Microbial biofilms: biosurfactants as antibiofilm agents. Applied Microbiology and Biotechnology, 98, 9915–9929. https://doi.org/10.1007/s00253-014-6169-6
Banerjee, J., Das Ghatak, P., Roy, S., Khanna, S., Hemann, C., Deng, B., Das, A., Zweier, J., Wozniak, D., & Sen, C.K. (2015). Silver-Zinc Redox-Coupled Electroceutical Wound Dressing Disrupts Bacterial Biofilm. PLOS ONE, 10(3), e0119531. https://doi.org/10.1371/journal.pone.0119531
Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-Strategies to Fight Multidrug Resistant Bacteria - “A Battle of the Titans”. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01441
Barrantes, K., Chacón, L., & Arias, M. (2022). El impacto de la resistencia a los antibióticos en el desarrollo sostenible. Población y Salud en Mesoamérica, 19(2), 321-345. https://doi.org/10.15517/psm.v0i19.47590
Barrientos, S., Brem, H., Stojadinovic, O., & Tomic-Canic, M. (2014). Clinical application of growth factors and cytokines in wound healing. Wound Repair and Regeneration, 22(5), 569-578. https://doi.org/10.1111/wrr.12205
Bexfield, A., , Bond, E., Roberts, E., Dudley, E., Nigam,Y., Thomas, S., Newton, R., & Ratcliffe, N. (2008). The antibacterial activity against MRSA strains and other bacteria of a <500Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes and Infection,10(4), 325-333. https://doi.org/10.1016/j.micinf.2007.12.011
Bianchera, A., Buttini, F., & Bettini, R. (2020). Micro/nanosystems and biomaterials for controlled delivery of antimicrobial and anti-biofilm agents. Expert Opinion on Therapeutic Patents, 30(12), 983-1000. https://doi.org/10.1080/13543776.2020.1839415
Bianchi, T., Wolcott, R., Peghetti, A., Leaper, D., Cutting, K., Polignano, R., Rosa Rita, Z., Moscatelli, A., Greco, A., Romanelli, M., Pancani, S., Bellingeri, A., Ruggeri, V., Postacchini, L., Tedesco, S., Manfredi, L., Camerlingo, M., Rowan, S., Gabrielli, A., & Pomponio, G. (2016). Recommendations for the management of biofilm: a consensus document. Journal of Wound Care, 25(6), 305-17. https://doi.org/10.12968/jowc.2016.25.6.305
Bischofberger, A.S. (2019). Drains, Bandages and External Coaptation. En Auer, Stick, Kummerle & Prange (Eds.), Equine Surgery (5ta ed., pp. 280-300). Elsevier. https://doi.org/10.1016/B978-0-323-48420-6.00017-X
Bjarnsholt, T. (2013). The role of bacterial biofilms in chronic infections. APMIS, 121(Supl. 136), 1-51. https://doi.org/10.1111/apm.12099
Bjarnsholt, T., Alhede, M., Eickhardt, S., Moser, C., Kühl, M., Østrup ,P., & Høiby, N. (2013). The in vivo biofilm. Trends in Microbiology, 21(9), 466-474. https://doi.org/10.1016/j.tim.2013.06.002
Bobrov, A.G., Getnet, D., Swierczewski, B., Jacobs, A., Medina, M., Tyner, S., Watters, C., & Antonic, V. (2022). Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military-relevant animal infection models. APMIS, 130(7), 436-457. https://doi.org/10.1111/apm.13119
Bonnichsen, L., Svenningsen, N., Rybtke,M., de Bruijn,I., Raaijmakers, J., Tolker, T., & Nybroe, O. ( 2015). Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomona fluorescens SBW25 biofilms. Microbiology (Reading), 161(12), 2289-2297. https://doi.org/10.1099%2Fmic.0.000191
Bosanquet, D.C., & Harding, K.G. (2014). Wound duration and healing rates: cause or effect? Wound Repair and Regeneration, 22(2),143-50. https://doi.org/10.1111/wrr.12149
Bowler, P. G. (2018). Antibiotic resistance and biofilm tolerance: a combined threat in the treatment of chronic infections. Journal of Wound Care, 27(5), 273-277. https://doi.org/10.12968/jowc.2018.27.5.273
Boyd, N., & Nailor, M. (2011). Combination antibiotic therapy for empiric and definitive treatment of gram-negative infections: insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy, 31(11), 1073-84. https://doi.org/10.1592/phco.31.11.1073
Brackman, G., & Coenye, T. (2015). Quorum sensing inhibitors as anti-biofilm agents. Current Pharmaceutical Design, 21(1), 5-11. https://doi.org/10.2174/1381612820666140905114627
Brumbaugh, G.W. (2005). Use of antimicrobials in wound management. Veterinary Clinics of North America: Equine Practice, 21(1), 63-75. https://doi.org/10.1016/j.cveq.2004.11.012
Butler, J.A., Colles, C.M., Dyson, S.J., Kold, S.E., & Poulos, P.W. (2017). Clinical Radiology of the Horse (2da ed.). John Wiley & Sons, Ames.
Cardona, M.A., Enríquez, J., Ramos, A., Padilla, C., & Vidal, A. (2016). Fístula cutánea y granuloma a cuerpo extraño por material de sutura. Presentación de un caso. Revista del Centro Dermatológico Pascua, 25(2),53-57. https://www.medigraphic.com/pdfs/derma/cd-2016/cd162b.pdf
Cartee, R. E., & Rumph, P. F. (1984). Ultrasonographic detection of fistulous tracts and foreign objects in muscles of horses. Journal of the American Veterinary Medical Association, 184(9), 1127-32. https://pubmed.ncbi.nlm.nih.gov/6725130/N
Cassiday, L. (2021). Emulsions: making oil and water mix. The American Oil Chemists’ Society (AOCS) Magazine. https://www.aocs.org/stay-informed/inform-magazine/featured-articles/emulsions-making-oil-and-water-mix-april-2014?SSO=True#:~:text= Surfactant
Centers for Disease Control and Prevention. (2022). COVID-19: U.S. Impact on Antimicrobial
Resistance. Special Report 2022. https://dx.doi.org/10.15620/cdc:117915
Cheng, D., Lian-Hui, Z., & Zeling, X. (2021). Harnessing the CRISPR-Cas Systems to Combat Antimicrobial Resistence. Frontiers in Microbiology, 12, 716064. https://doi.org/10.3389/fmicb.2021.716064
Chindera, K., Mahato, M., Sharma, A.K., Horsley, H., Kloc-Muniak, K., Kamaruzzaman, N.F., Kumar, S., McFarlane, A., Stach, J., Bentin, T., & Good, L. (2016). The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Nature Scientific Reports, 6, 23121. https://doi.org/10.1038/srep23121
Chung, P.Y., & Khanum, R.J. (2017). Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. Journal of Microbiology, Immunology and Infection, 50(4), 405-410. https://doi.org/10.1016/j.jmii.2016.12.005
Collier, M., & Hofer, P. (2017) Taking wound cleansing seriously to minimize risk. Wounds UK, 13(1), 58–64. https://www.wounds-uk.com/journals/issue/51/article-details/taking-wound-cleansing-seriously-to-minimise-risk
Coraça, D.C., Steixner , S., Wurm , A., & Nogler, M. (2021). Antibacterial and Anti-Biofilm Activity of Omega-3 Polyunsaturated Fatty Acids against Periprosthetic Joint Infections-Isolated Multi-Drug Resistant Strains. Biomedicines, 9(4), 334. https://doi.org/10.3390/biomedicines9040334
Cortell, C., Gaspar, M., Achau, R., Delgado, T., & Hortelano, A. (2019). Terapia de presión negativa con instilación para el tratamiento de heridas infectadas: recomendaciones de utilización basadas en la evidencia. Farmacia Hospitalaria, 43(1), 6-12. https://dx.doi.org/10.7399/fh.11011
Cos, P., Toté, K., Horemans, T., & Maes, L. (2010). Biofilms: an extra hurdle for effective antimicrobial therapy. Current Pharmaceutical Design, 16(20), 2279-2295. https://doi.org/10.2174/138161210791792868
Cowan, T. (2015). Is there a difference between debridement and desloughing? British Journal of Nursing, 24(Supl. 15). https://doi.org/10.12968/bjon.2015.24.Sup15.S18
Crespo, R., Ong, A., Albasha, O., Bass, K., & Arany, P. (2019). Photobiomodulation Therapy for Wound Care: A Potent, Noninvasive, Photoceutical Approach. Advances In Skin & Wound Care, 32(4),157-167. https://doi.org/10.1097/01.ASW.0000553600.97572.d2
Daeschlein, G., Napp, M., Assadian, O., Von Podewils, S., Reese, K., Hinz, P., Matiasek, J., Spitzmueller, R., Humphreys, P., Jünger, M., & Kramer, A. (2017). Viability of Lucilia sericata maggots after exposure to wound antiseptics. International Wound Journal, 14(3), 512-515. https://doi.org/10.1111/iwj.12637
Dalton, T., Dowd S., Wolcott, R.D., Sun, Yan, Watters, C., Griswold, J., & Rumbaugh, K. (2011). An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLOS One, 6(11), e27317. https://doi.org/10.1371/journal.pone.0027317
Dart, A.J., Sole, A., & Stashak, T.S. (2016). Management Practices that Influence Wound Infection and Healing. En Theoret, C., & Schumacher, J. (Eds.), Equine Wound Management (3ra ed., pp. 47-74). Wiley Online Library. https://doi.org/10.1002/9781118999219.ch4
Darvishi, S., Tavakoli, Sh., Kharaziha, M., Girault, H., Kaminski, C., & Mela, I. (2022). Advances in the Sensing and Treatment of Wound Biofilms. Angewandte Chemie, 61(13), e202112218. https://doi.org/10.1002/anie.202112218
Das Ghatak, P., Mathew, S., Pandey, P. Roy, S., & Sen, C.K. (2018). A surfactant polymer dressing potentiates antimicrobial efficacy in biofilm disruption. Scientific Reports, 8, 873. https://doi.org/10.1038/s41598-018-19175-7
Dawgul, M., Maciejewska, M., Jaskiewicz, M., Karafova, A., & Kamysz, W. (2014). Antimicrobial peptides as potential tool to fight bacterial biofilm. Acta Poloniae Pharmaceutica, 71(1), 39-47. https://www.ptfarm.pl/pub/File/Acta_Poloniae/2014/1/039.pdf
Dias, D., Borges, A., Oliveira, D., Martínez, A., Saavedra, M., & Simões, M. (2018). Biofilms and antibiotic susceptibility of multidrug-resistant bacteria from wild animals. PeerJ, 6, e4974. https://doi.org/10.7717/peerj.4974
Diban, F., Di Lodovico, S., Di Fermo, P., D’Ercole, S., D’Arcangelo, S., Di Giulio, M., & Cellini, L. (2023). Biofilms in Chronic Wound Infections: Innovative Antimicrobial Approaches Using the In Vitro Lubbock Chronic Wound Biofilm Model. International Journal of Molecular Sciences, 24(2), 1004. https://doi.org/10.3390/ijms24021004
DISARM Act of 2021, H.R.4127, 117th Congress (2021). https://www.congress.gov/bill/117th-congress/house-bill/4127/text
Donné, J. & Dewilde, S. (2015). The Challenging World of Biofilm Physiology. Advances in Microbial Physiology, 67, 235-92. http://dx.doi.org/10.1016/bs.ampbs.2015.09.003
Dos Santos, C. A., Seckler, M. M., Ingle, A. P., Gupta, I., Galdiero, S., Galdiero, M., & Rai, M. (2014). Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues. Journal of Pharmaceutical Sciences, 103(7), 1931–1944. https://doi.org/10.1002/jps.24001
Dow, G. (2001). Infection in chronic wounds. En Kraner, D., Rodeheaver, G.T., & Sibbald, R.G. (Eds.), Chronic Wound Care: A Clinical Source Book for Healthcare Professionals. (3ra ed., p. 343). Wayne, PA. H.M. Communications.
Eggleston, R. B. (2018). Wound Management: Wounds with Special Challenges. Veterinary Clinics of North America: Equine Practice, 34(3), 511-538. https://doi.org/10.1016/j.cveq.2018.07.003
Engelke, K., & Oldhafer, K.J. (2010). Prevention of postoperative wound infections. Der Chirurg, 81(6), 577-85. https://doi.org/10.1007/s00104-009-1860-3
Estrada-McDermott, J., Montero, J., Vargas, J., & Estrada-Umaña, M. (2016). Trauma de la pared torácica y manejo del neumotórax en equinos: reporte de un caso clínico atendido bajo condiciones de campo. Ciencias Veterinarias, 33(2), 67-79. https://doi.org/10.15359/rcv.33-2.2
Estrada-McDermott, J. & Estrada-Umaña, M. (2020). Manual de Introducción a la Radiología Equina. Primera Edición. Programa de Publicaciones Universidad Nacional, Costa Rica (Cod: 1865-20-P.UNA). https://repositorio.una.ac.cr/bitstream/handle/11056/23798/ManualRadiologiaEquina.pdf?sequence=1&isAllowed=y
European Medicines Agency. (2022). Guideline on the application of Article 34 of Regulation 5 (EU) 2019/6. Classification of veterinary medicinal products (prescription status) – Draft. Committee for Veterinary Medicinal Products. https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/draft-guideline-application-article-34-regulation-eu-2019/6-classification-veterinary-medicinal-products-prescription-status_en.pdf
Falanga, V., Isseroff, R.R., Soulika, A.M., Romanelli, M., Margolis, D., Kapp, S., Granick, M., & Harding, K. (2022). Chronic wounds. Nature reviews. Disease primers, 8(1), 50. https://doi.org/10.1038/s41572-022-00377-3
Farr, A.C., Hawkins, J.F., Baird, D.K., & Moore, G.E. (2010). Wooden, metallic, hair, bone, and plant foreign bodies in horses: 37 cases (1990-2005). Journal of the American Veterinary Medical Association, 237(10), 1173–1179. https://doi.org/10.2460/javma.237.10.1173
Fekrazad, R., Asefi , S., Allahdadi , M., & Kalhori, K. (2016). Effect of Photobiomodulation on Mesenchymal Stem Cells. Photomedicine and laser surgery, 34(11), 533–542. https://doi.org/10.1089/pho.2015.4029
Fischbach, M. A. (2011). Combination therapies for combating antimicrobial resistance. Current Opinions on Microbiology, 14(5): 519-523. https://doi.org/10.1016/j.mib.2011.08.003
Flemming, H., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9): 623-633. https://doi.org/10.1038/nrmicro2415
Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., & Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563-75. https://doi.org/10.1038/nrmicro.2016.94
Flemming, H.C., & Wuertz, S. (2019). Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews Microbiology, 17, 247-260. https://doi.org/10.1038/s41579-019-0158-9
Flores da Silva, K., & Teixeira, M. (2013). Unveiled the larval therapy as alternative in the treatment of skin lesions: An integrative review. Revista de Pesquisa Cuidado é Fundamental Online, 5(3), 66-74. https://doi.org/10.9789/2175-5361
Fonder, M.A., Lazarus, G.S., Cowan, D.A., Aronson-Cook, B., Kohli, A.R., & Mamelak, A.J. (2008). Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. Journal of the American Academy of Dermatology, 58(2), 185–206. https://doi.org/10.1016/j.jaad.2007.08.048
Food and Drug Administration. (2018). Tecnología avanzada esclarece la resistencia a los antibióticos. https://www.fda.gov/consumers/articulos-para-el-consumidor-en-espanol/fda-tecnologia-avanzada-esclarece-la-resistencia-los-antibioticos
Gabriel, A. (2022). Wound irrigation. Medscape. https://emedicine.medscape.com/article/1895071-overview
Gift, L. J., & DeBowes, R. M. (1989). Wounds associated with osseous sequestration and penetrating foreign bodies. Veterinary Clinics of North America: Equine Practice, 5(3), 695-708. https://doi.org/10.1016/s0749-0739(17)30583-7
Gilbert, P., & Moore, L.E. (2005). Cationic antiseptics: diversity of action under a common epithet. Journal of Applied Microbiology, 99, 703-715. https://doi.org/10.1111/j.1365-2672.2005.02664.x
Gillespie, C., Hawkins, J., J. Li, Connell, S., Miller, M., Saenger, M., & Freeman, L. (2017). Effects of topical application of silver sulfadiazine cream, triple antimicrobial ointment, or hyperosmolar nanoemulsion on wound healing, bacterial load, and exuberant granulation tissue formation in bandaged full-thickness equine skin wounds. American journal of veterinary research, 78(5), 638–646. https://doi.org/10.2460/ajvr.78.5.638
Ghosh, Ch., Paramita, S., Issa, R., & Haldar, J. (2019). Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Review Special Issue: Antimicrobial Resistance and Novel Therapeutics, 27(4), 323-338. https://doi.org/10.1016/j.tim.2018.12.010
Grothier, L. (2015). Improving clinical outcomes and patient experience through the use of desloughing. British journal of community nursing, Supl. Wound Care, S25–S31. https://doi.org/10.12968/bjcn.2015.20.Sup9.S25
Gupta, A., Mumtaz, S., Li, C.-H., Hussain, I., & Rotello, V. M. (2018). Combatting antibiotic-resistant bacteria using nanomaterials. Chemical Society Reviews, 48(2), 415-427. https://doi.org/10.1039/c7cs00748e
Gupta, R., & Xie, H. (2018). Nanoparticles in Daily Life: Applications, Toxicity and Regulations. Journal of Environmental Pathology. Toxicology and Oncology, 37(3), 209– 230. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2018026009
Hanson, R.R. (2018). Medical Therapy in Equine Wound Management. The Veterinary clinics of North America. Equine practice, 34(3), 591–603. https://doi.org/10.1016/j.cveq.2018.07.008
Harries, R., Bosanquet, D., & Harding, K. (2016). Wound bed preparation: TIME for an update. International wound journal, 13(Supl. 3), 8–14. https://doi.org/10.1111/iwj.12662
Hendrickson, D.A. (2019). Management of Superficial Wounds, Deep and Chronic Wounds, Sinus Tracts, and Fistula. En Auer, Stick, Kummerle & Prange (Eds.), Equine Surgery, (5ta ed., pp.403-425). Elsevier. https://doi.org/10.1016/B978-0-323-48420-6.00027-2
Hendrickson, D.A., & Virgin, J. (2005). Factors that affect equine wound repair. The Veterinary clinics of North America. Equine practice, 21, 33-44. https://doi.org/10.1016/j.cveq.2004.11.002
Hendrix, S.M., & Baxter, G.M. (2005). Management of complicated wounds. The Veterinary clinics of North America. Equine practice, 21(1), 217-30. https://doi.org/10.1016/j.cveq.2004.11.011
Hernández, R., Velasco, D., Diaz, D., Arevalo, K., Garza, M., de la Garza, M., & Cabral, C. (2012). Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. International Journal of Nanomedicine, 7, 2109-2013. https://doi.org/10.2147/IJN.S29854
Hernando, S., Alcalde, M., Gil, T., Valverde, J., & Martínez, J. (2020). Inhibition of the Pseudomonas aeruginosa Quorum Sensing Response Is Based on its Time-Dependent Competition with N-(3-Oxo-dodecanoyl)-L-homoserine Lactone for LasR Binding. Frontiers in Molecular Biosciences, 7, 25. https://doi.org/10.3389/fmolb.2020.00025
Horsley, V. (2022). Adipocyte plasticity in tissue regeneration, repair, and disease.
Current Opinion in Genetics & Development, 76, 101968. https://doi.org/10.1016/j.gde.2022.101968
Høiby, N., Bjarnsholt, T., Moser, C., Bassi, G.L., Coenye, T., Donelli, G., Hall-Stoodley, L., Holá, V., Imbert, C., Kirketerp-Møller, K., Lebeaux, D., Oliver, A., Ullmann, A.J., Williams, C., & ESCMID Study Group for Biofilms and Consulting External Expert Werner Zimmerli. (2015). ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 21 Supl. 1, S1–S25. https://doi.org/10.1016/j.cmi.2014.10.024
Huang, Y., Cambre, M., & Lee, H. (2017). The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. International Journal of Molecular Sciences, 18(12), 2702. https://doi.org/10.3390/ijms18122702
Hübner, N.O., Matthes, R., & Koban, I. (2010a). Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown in polystyrene and silicone materials. Skin pharmacology and physiology, Supl. 23, 28–34. https://doi.org/10.1159/000318265
Hübner, N., Siebert, J., & Kramer, A. (2010b). Octenidine Dihydrochloride, a Modern Antiseptic for Skin, Mucous Membranes and Wounds. Skin pharmacology and physiology, 23, 244–258. https://doi.org/10.1159/000314699
Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156 (2), 128-145. https://doi.org/10.1016/j.jconrel.2011.07.002
Hunt, R. J., Allen, D., & Mueller, P.O. (1991). Intracranial trauma associated with extraction of a temporal ear tooth (dentigerous cyst) in a horse. The Cornell veterinarian, 81(2), 103–108. https://pubmed.ncbi.nlm.nih.gov/2029835/
Iliescu, M., Paek, L., Dao, L., Rouchet, N., Efanov, J.I., Édouard, C., & Danino, M.A. (2019). In-situ characterization of the bacterial biofilm associated with XeroformTM and KaltostatTM dressings and evaluation of their effectiveness on thin skin engraftment donor sites in burn patients. Burns, 45(5), 1122-1130. https://doi.org/10.1016/j.burns.2019.02.024
Inceoglu, R., & Gencosmanoglu, R. (2003). Fistulotomy and drainage of deep postanal space abscess in the treatment of posterior horseshoe fistula. BMC Surgery, 3(10). https://doi.org/10.1186/1471-2482-3-10
Jakobsen, T.H., Bjarnsholt, T., Jensen, P.Ø., Givskov, M., & Høiby, N. (2013). Targeting quorum sensing in Pseudomonas aeruginosa biofilms: current and emerging inhibitors. Future microbiology, 8(7), 901–921. https://doi.org/10.2217/fmb.13.57
James, G.A., Swogger, E., Wolcott, R., Pulcini, E., Secor, P., Sestrich, J., Costerton, J.W., & Stewart, P.S. (2008). Biofilms in chronic wounds. Wound repair and regeneration, 16(1), 37-44. https://doi.org/10.1111/j.1524-475X.2007.00321.x
Jann, H., & Pasquini, C. (2005). Wounds of the distal limb complicated by involvement of deep structures. The Veterinary clinics of North America. Equine practice, 21(1), 145-65. https://doi.org/10.1016/j.cveq.2004.11.008
Jones, S. (2012). Engineering control in biofilms. Nature Biotechnology, 30, 251. https://doi.org/10.1038/nbt.2162
Jørgensen, E., Bjarnsholt, T., & Jacobsen, S. (2021). Biofilm and Equine Limb Wounds. Animals, 11(10), 2825. https://doi.org/10.3390/ani11102825
Joyce, J.L. (2007). Injury to synovial structures. The Veterinary clinics of North America. Equine practice, 23(1), 103-16. https://doi.org/10.1016/j.cveq.2006.12.001
Junka, A., Bartoszewicz, M., Smutnicka, D., Secewicz, A., & Szymczyk, P. (2014). Efficacy of Antiseptics Containing Povidone-Iodine, Octenidine Dihydrochloride and Ethacridine Lactate against Biofilm Formed by Pseudomonas aeruginosa and Staphylococcus aureus Measured with the Novel Biofilm-Oriented Antiseptics Test. International Wound Journal, 11(6), 730-734. https://doi.org/10.1111/iwj.12057
Kaehn, K. (2010). Polihexanide: a safe and highly effective biocide. Skin pharmacology and physiology, Supl. 23, 7-16. https://doi.org/10.1159/000318237
Kamaruzzaman, N., Tan, L., Mat, K., Saeed, Sh., Hamdan, R., Choong, S., Wong, W., Chivu, A., & Gibson, A. (2018). Targeting the Bacterial Protective Armour; Challenges and Novel Strategies in the Treatment of Microbial Biofilm. Materials, 11(9), 1705. https://doi.org/10.3390/ma11091705
Kamus, L., & Theoret, Ch. (2018). Choosing the Best Approach to Wound Management and Closure. The Veterinary clinics of North America. Equine practice, 34(3), 499-509. https://doi.org/10.1016/j.cveq.2018.07.005
Kane, D.P. (2001). Chronic wound healing and chronic wound management. En Krasner, D.L, Rodeheaver, G.T., & Sibbald, R.G. (Eds.), Chronic Wound Care. (3ta ed., p.7). Wayne Pa. HMP Communications.
Käser, H. (2016). Naturkosmetische Rohstoffe: Wirkung, Verarbeitung, kosmetischer Einsatz. Ed. Freya Verlag (office@freya.at), Berlin. ISBN 10: 3990250124
Kaur, B., Gupta, J., Sharma, S., Sharma, D., & Sharma, S. (2021). Focused review on dual inhibition of quorum sensing and efflux pumps: A potential way to combat multi drug resistant Staphylococcus aureus infections. International journal of biological macromolecules, 190, 33–43. https://doi.org/10.1016/j.ijbiomac.2021.08.199
Keast, D., Swanson, T., Carville, K., Fletcher, J., Schultz, G., & Black, J. (2014). Ten top tips. Understanding and managing wound biofilm. Wounds International, 5, 22-4. https://www.woundsinternational.com/resources/details/ten-top-tips-understanding-and-managing-wound-biofilm
Khatoon, Z. , Christopher D. McTiernan, C.D. , Erik J. Suuronen, E.J., Thien-Fah Mah , & Alarcón, E.I. (2018). Formación de biopelículas bacterianas en dispositivos implantables y enfoques para su tratamiento y prevención. Heliyón, 4(12), e01067. https://doi.org/10.1016/j.heliyon.2018.e01067
Kim, P.J., Attinger, C.E., Constantine, T., Crist, B.D., Faust, E., Hirche, C.R., Lavery, L.A., Messina, V.J., Ohura, N., Punch, L.J., Wirth, G.A., Younis, I., & Téot, L. (2020). Negative pressure wound therapy with instillation: International consensus guidelines update. International Wound Journal, 17(1), 174-186. https://doi.org/10.1111/iwj.13254
King, C.J. (2020). Changing attitudes toward maggot debridement therapy in wound treatment: a review and discussion. Wound Care, 29(Sup2c), S28-S34. https://doi.org/10.12968/jowc.2020.29.Sup2c.S28
Klauder, J.V. (1958). Interrelations of human and veterinary medicine: Discussion of some aspects of comparative dermatology. New England Journal of Medicine, 258 (4), 170-177. https://www.nejm.org/doi/pdf/10.1056/NEJM195801232580405
Knottenbelt, D.C. (2002). Handbook of Equine Wound Management. Saunders. Phil. ISBN-13: 978-0702026935.
Kramer, A., Dissemond, J., Kim, S., Willy, Ch., Mayer, D., Papke, R., Tuchmann, F., & Assadian, O. (2018). Consensus on Wound Antisepsis: Update. Skin pharmacology and physiology, 31, 28-58. https://doi.org/10.1159/000481545.
Krasowski, G. , Junka, A. , Paleczny, J. , Czajkowska, J. , Makomaska, E., Chodaczek, G. , Majkowski, M. , Migdał, P. , Fijałkowski, K. , Kowalska, B., & Bartoszewicz, M. (2021). In Vitro Evaluation of Polihexanide, Octenidine and NaClO/HClO-Based Antiseptics against Biofilm Formed by Wound Pathogens. Membranes, 11(1), 62. https://doi.org/10.3390/membranes11010062.
Launois, T., Moor, P.L., Berthier, A., Merlin, N., Rieu, F., Schlotterer, C., Siegel, A., Fruit, G., Dugdale, A., & Vandeweerd, J. (2021). Use of negative pressure wound therapy in the treatment of limb wounds: a case series of 42 horses. Journal of equine veterinary science, 106, 103725. https://doi.org/10.1016/j.jevs.2021.103725
Laverty, S., Lavoie, J.P., Pascoe, J. R., & Ducharme, N. (1996). Penetrating wounds of the thorax in 15 horses. Equine veterinary journal, 28(3), 220–224. https://doi.org/10.1111/j.2042-3306.1996.tb03776.x
Lee, N., Ko, W., & Hsueh, P. (2019). Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms. Frontiers in Pharmacology, 10, 1153. https://doi.org/10.3389/fphar.2019.01153
Leaper, D. (2002). Sharp technique for wound debridement. World Wide Wounds. http://www.worldwidewounds.com/2002/december/Leaper/Sharp-Debridement.html
Lima, R., Del Fiol, F. S., & Balcão, V. M. (2019). Prospects for the Use of New Technologies to Combat Multidrug-Resistant Bacteria. Frontiers in Pharmacology, 10, 692. https://doi.org/10.3389/fphar.2019.00692
Louis, M., Clamens, T., Tahrioui, A., Desriac, F., Rodrigues, S., Rosay, T., Harmer, N., Diaz, S., Barreau, M., Racine, P.J., Kipnis, E., Grandjean, T., Vieillard, J., Bouffartigues, E., Cornelis, P., Chevalier, S., Feuilloley, M.G.J., & Lesouhaitier, O. (2022). Pseudomonas aeruginosa Biofilm Dispersion by the Human Atrial Natriuretic Peptide. Advanced Science, 9(7), e2103262. https://doi.org/10.1002/advs.202103262
Magee, A.A., Ragle, C.A., & Howlett, M.R. (1997). Use of tenoscopy for management of septic tenosynovitis caused by a penetrating porcupine quill in the synovial sheath surrounding the digital flexor tendons of a horse. Journal of the American Veterinary Medical Association, 210(12), 1768–1770. https://pubmed.ncbi.nlm.nih.gov/9187727/
Magiorakos, A., Srinivasan, A., Carey, R., Carmeli, Y., Falagas, M., Giske, C., & Monnet, D. (2012). Multidrug-resistant, extensively drug-resistant and pandrugresistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3): 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570
Maillard , J., Kampf , G., & Cooper, R. (2021). Antimicrobial stewardship of antiseptics that are pertinent to wounds: the need for a united approach. JAC-antimicrobial resistance, 3(1), dlab027. https://doi.org/10.1093/jacamr/dlab027
Maliha, M., Brammananth, R., Dyson, J., Coppel, R., Werrett, M., Andrews, P., & Batchelor, W. (2021). Biocompatibility and selective antibacterial activity of a bismuth phosphinato-nanocellulose hydrogel. Cellulose, 28, 4701-4718. https://doi.org/10.1007/s10570-021-03835-5
Malone, M., Bjarnsholt, T., McBain, A.J., James, G.A., Stoodley, P., Leaper, D., Tachi, M., Schultz, G., Swanson, T., & Wolcott, R.D. (2017). The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. Journal of Wound Care, 26(1), 20-25. https://doi.org/10.12968/jowc.2017.26.1.20
Malpass, K.G., Snelling, C., & Tron, V. (2003). Comparison of Donor-Site Healing under Xeroform and Jelonet dressings: Unexpected Findings. Plastic and reconstructive surgery, 112(2), 430–439. https://doi.org/10.1097/01.PRS.0000070408.33700.C7
Mangkorntongsakul, V., & Oarkley, A. (2019). Wound Cleansers. DermNet NZ. https://dermnetnz.org/topics/wound-cleansers
Marchant, R., & Banat, I.M. (2012). Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnology letters, 34(9), 1597–1605. https://doi.org/10.1007/s10529-012-0956-x
Margolin, L., & Gialanella, P. (2010). Assessment of the antimicrobial properties of maggots. International Wound Journal, 7(3), 202-204. https://doi.org/10.1111/j.1742-481X.2010.00234.x.
McDonnell, G., & Russell, A. (1999). Antiseptics and disinfectants: Activity, action and resistance. Clinical Microbiology Reviews, 12(1), 147-179. https://doi.org/10.1128/CMR.12.1.147
Müller, G., & Kramer, A. (2008). Biocompatibility Index of Antiseptic Agents by Parallel Assessment of Antimicrobial Activity and Cellular Cytotoxicity. Journal of Antimicrobial Chemotherapy, 61(6), 1281-1287. https://doi.org/10.1093/jac/dkn125.199912.
Munsterman, A.S., & Reid, R. (2014). Trauma and wound management: gunshot wounds in horses. The Veterinary clinics of North America. Equine practice, 30(2), 453–ix. https://doi.org/10.1016/j.cveq.2014.04.007
Münzer, B., & Lubczyk, B. (1992). The ultrasonic diagnosis of foreign bodies in the horse. Berliner und Munchener tierarztliche Wochenschrift, 105(12), 397–400. https://pubmed.ncbi.nlm.nih.gov/1492833/
Newton, H., Edwards, J., Mitchell, L., & Percival, S.L. (2017). Role of slough and biofilm in delaying healing in chronic wounds. British journal of nursing (Mark Allen Publishing), 26(Sup20a), S4–S11. https://doi.org/10.12968/bjon.2017.26.Sup20a.S4
Norman, G., Dumville, J.C., Mohapatra, D.P., Owens, G.L., & Crosbie, E.J. (2016). Antibiotics and antiseptics for surgical wounds healing by secondary intention. The Cochrane database of systematic reviews, 3(3), CD011712. https://doi.org/10.1002/14651858.CD011712.pub2
Nusbaum, A., Gil, J., Rippy, M., Warne, B., Valdes, J., Claro, A., & Davis, S.C. (2012). Effective method to remove wound bacteria: comparison of various debridement modalities in an in vivo porcine model. The Journal of surgical research, 176(2), 701–707. https://doi.org/10.1016/j.jss.2011.11.1040
Organización Mundial de la Salud. (2016). Plan de Acción Mundial sobre la Resistencia a los Antimicrobianos. Http://Www.Who.Int/Antimicrobial-Resistance/Global-Action-Plan/Es/
Organización Mundial de la Salud. (2017). Lista Organización Mundial de la Salud de patógenos prioritarios para la I+D de nuevos antibióticos. https://www.who.int/es/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.
Ortega-Peña, S., & Hernández-Zamora, E. (2018). Biopelículas microbianas y su impacto en áreas médicas: fisiopatología, diagnóstico y tratamiento. Boletín médico del Hospital Infantil de México, 75(2), 79–88. https://doi.org/10.24875/BMHIM.M18000012
Ospina, M. (2021). Bacterias y súper bacterias ponen en riesgo la salud humana. Boletín OPS/OMS. https://www.paho.org/es/noticias/4-3-2021-bacterias-super-bacterias-ponen-riesgo-salud-humana
Ousey, K., & McIntosh, C. (2010). Understanding wound bed preparation and wound debridement. British journal of community nursing, 15(3). https://doi.org/10.12968/bjcn.2010.15.Sup12.S22
Ovens, L., & Irving, S. (2018). Advances in wound cleansing: an integrated approach. Wounds UK, 14(1), 58-63. https://www.woundsinternational.com/resources/details/advances-wound-cleansing-integrated-approach
Parrilli, E., Tutino, M.L., & Marino, G. (2022). Biofilm as an adaptation strategy to extreme conditions. Rendiconti Lincei. Scienze Fisiche e Naturali, 33, 527–536. https://doi.org/10.1007/s12210-022-01083-8
Parsek, M. R., & Greenberg, E.P. (2005). Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in Microbiology, 13(1), 27-33. https://doi.org/10.1016/j.tim.2004.11.007
PASTEUR Act of 2021. S. 2076. 117th Congress (2021). https://www.congress.gov/bill/117th-congress/senate-bill/2076/text
Peloso, J. G., Nickels, F. A., & Stickle, R. L. (1991). What is your diagnosis? Deep fistula with possible foreign body. Journal of the American Veterinary Medical Association, 199(7), 923–924. https://pubmed.ncbi.nlm.nih.gov/1769883/
Percival, S. L., Chen, R., Mayer, D., & Salisbury, A. (2018). Mode of action of poloxamer‐based surfactants in wound care and efficacy on biofilms. International Wound Journal, 15(5), 749–755. https://doi.org/10.1111/iwj.12922
Percival, S. L., Finnegan, S., Donelli, G., Vuotto, C., Rimmer, S., & Lipsky, B. A. (2014). Antiseptics for treating infected wounds: Efficacy on biofilms and effect of pH. Critical Reviews in Microbiology, 1–17. https://doi.org/10.3109/1040841X.2014.940495
Percival, S. L., Mayer, D., Kirsner, R. S., Schultz, G., Weir, D., Roy, S., Alavi, A., & Romanelli, M. (2019). Surfactants: Role in biofilm management and cellular behaviour. International Wound Journal, 16(3), 753–760. https://doi.org/10.1111/iwj.13093
Percival, S. L., Mayer, D., Malone, M., Swanson, T., Gibson, D., & Schultz, G. (2017). Surfactants and their role in wound cleansing and biofilm management. Journal of Wound Care, 26(11), 680–690. https://doi.org/10.12968/jowc.2017.26.11.680
Percival, S. L., & Suleman, L. (2015). Slough and biofilm: Removal of barriers to wound healing by desloughing. Journal of Wound Care, 24(11), 498–510. https://doi.org/10.12968/jowc.2015.24.11.498
Percival, S. L., Vuotto, C., Donelli, G., & Lipsky, B. A. (2015). Biofilms and Wounds: An Identification Algorithm and Potential Treatment Options. Advances in Wound Care, 4(7), 389–397. https://doi.org/10.1089/wound.2014.0574
Petrova, O., & Sauer, K. (2016). Escaping the biofilm in more than one way: desorption, detachment or dispersion. Current Opinion in Microbiology, 30, 67-78. http://dx.doi.org/10.1016/j.mib.2016.01.004
Pilcher, M. (2016). Wound cleansing: A key player in the implementation of the TIME paradigm. Journal of Wound Care, 25(Sup3), S7–S9. https://doi.org/10.12968/jowc.2016.25.Sup3.S7
Pletzer, D., Coleman, S. R., & Hancock, R. E. (2016). Anti-biofilm peptides as a new weapon in antimicrobial warfare. Current Opinion in Microbiology, 33, 35–40. https://doi.org/10.1016/j.mib.2016.05.016
Rademacher, N., Fürst, A., & Kaser‐Hotz, B. (2006). Ultrasonographic detection of a wooden foreign body in a horse. Veterinary Record, 158(21), 739–740. https://doi.org/10.1136/vr.158.21.739
Rajput, A., Bhamare, K. T., Thakur, A., & Kumar, M. (2022). Biofilm-i: A Platform for Predicting Biofilm Inhibitors Using Quantitative Structure—Relationship (QSAR) Based Regression Models to Curb Antibiotic Resistance. Molecules, 27(15), 4861. https://doi.org/10.3390/molecules27154861
Ramón, P., Sati, H., & Galas, M. (2018). Enfoque de Una Salud en las acciones para enfrentar la resistencia a los antimicrobianos desde una óptica latinoamericana. Revista Peruana de Medicina Experimental y Salud Pública, 35(1), 103. https://doi.org/10.17843/rpmesp.2018.351.3605
Real Academia Española. (s.f.). Desbridar. Diccionario de la lengua española (23a ed.). Recuperado en 18 de noviembre de 2023, de https://dle.rae.es/desbridar.
Rebello, S., Asok, A. K., Mundayoor, S., & Jisha, M.S. (2013). Surfactants: Chemistry, Toxicity and Remediation. En Lichtfouse, E., Schwarzbauer, J., & Robert, D. (Eds.), Pollutant Diseases, Remediation and Recycling (277-320). Springer. https://doi.org/10.1007/978-3-319-02387-8
Rezaie, P., Pourhajibagher, M., Chiniforush, N., Hosseini, N., & Bahador, A. (2018). The Effect of Quorum-Sensing and Efflux Pumps Interactions in Pseudomonas aeruginosa Against Photooxidative Stress. Journal of Lasers in Medical Sciences, 9(3), 161–167. https://doi.org/10.15171/jlms.2018.30
Rodríguez-López, L., López-Prieto, A., Lopez-Álvarez, M., Pérez-Davila, S., Serra, J., González, P., Cruz, J. M., & Moldes, A. B. (2020). Characterization and Cytotoxic Effect of Biosurfactants Obtained from Different Sources. ACS Omega, 5(48), 31381–31390. https://doi.org/10.1021/acsomega.0c04933
Rumbaugh, K. P., & Sauer, K. (2020). Biofilm dispersion. Nature Reviews Microbiology, 18(10), 571–586. https://doi.org/10.1038/s41579-020-0385-0
Rybtke, M., Hultqvist, L. D., Givskov, M., & Tolker-Nielsen, T. (2015). Pseudomonas aeruginosa Biofilm Infections: Community Structure, Antimicrobial Tolerance and Immune Response. Journal of Molecular Biology, 427(23), 3628–3645. https://doi.org/10.1016/j.jmb.2015.08.016
Saeed, K., McLaren, A. C., Schwarz, E. M., Antoci, V., Arnold, W. V., Chen, A. F., Clauss, M., Esteban, J., Gant, V., Hendershot, E., Hickok, N., Higuera, C. A., Coraça‐Huber, D. C., Choe, H., Jennings, J. A., Joshi, M., Li, W. T., Noble, P. C., Phillips, K. S., … Witsø, E. (2019). 2018 international consensus meeting on musculoskeletal infection: Summary from the biofilm workgroup and consensus on biofilm related musculoskeletal infections. Journal of Orthopaedic Research, 37(5), 1007–1017. https://doi.org/10.1002/jor.24229
Sánchez-Gómez, S., Ferrer-Espada, R., Stewart, P. S., Pitts, B., Lohner, K., & Martínez De Tejada, G. (2015). Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms. BMC Microbiology, 15(1), 137. https://doi.org/10.1186/s12866-015-0473-x
Sanidad Gobierno Español (2022). Campaña para uso responsable de antibióticos. https://antibioticos.sanidad.gob.es/ne-health-una-solageneral-bacterias.htm
Scalise, A., Bianchi, A., Tartaglione, C., Bolletta, E., Pierangeli, M., Torresetti, M., Marazzi, M., & Di Benedetto, G. (2015). Microenvironment and microbiology of skin wounds: The role of bacterial biofilms and related factors. Seminars in Vascular Surgery, 28(3–4), 151–159. https://doi.org/10.1053/j.semvascsurg.2016.01.003
Schultz, G. S., Barillo, D. J., Mozingo, D. W., & Chin, G. A. (2004). Wound bed preparation and a brief history of TIME. International Wound Journal, 1(1), 19–32. https://doi.org/10.1111/j.1742-481x.2004.00008.x
Schultz, G. S., Bjarnsholt, T., James, G. A., Leaper, D. J., McBain, A. J., Malone, M., Stoodley, P., Swanson, T., Tachi, M., Wolcott, R. D., & for the Global Wound Biofilm Expert Panel. (2017). Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair and Regeneration, 25(5), 744–757. https://doi.org/10.1111/wrr.12590
Schultz, G. S., Sibbald, R. G., Falanga, V., Ayello, E. A., Dowsett, C., Harding, K., Romanelli, M., Stacey, M. C., Teot, L., & Vanscheidt, W. (2003). Wound bed preparation: A systematic approach to wound management. Wound Repair and Regeneration, 11(s1). https://doi.org/10.1046/j.1524-475X.11.s2.1.x
Schultz, G. S., Woo, K., Weir, D., & Yang, Q. (2018). Effectiveness of a monofilament wound debridement pad at removing biofilm and slough: Ex vivo and clinical performance. Journal of Wound Care, 27(2), 80–90. https://doi.org/10.12968/jowc.2018.27.2.80
Schumacher, J. (2019). Testis. En Auer, Kummerle, & Prange (Eds.), Equine Surgery (5ta ed., pp. 994–1034). Elsevier. https://doi.org/10.1016/B978-0-323-48420-6.00060-0
Serena, T. E., Bayliff, S. W., & Brosnan, P. J. (2022). Bacterial protease activity: A prognostic biomarker of early wound infection. Journal of Wound Care, 31(4), 352–355. https://doi.org/10.12968/jowc.2022.31.4.352
Serena, T. E., Bayliff, S. W., Brosnan, P. J., DiMarco, D. T., Doner, B. A., Guthrie, D. A., Patel, K. D., Sabo, M. J., Samies, J. H., & Carter, M. J. (2021). Bacterial protease activity as a biomarker to assess the risk of non‐healing in chronic wounds: Results from a multicentre prospective cohort clinical trial. Wound Repair and Regeneration, 29(5), 752–758. https://doi.org/10.1111/wrr.12941
Serena, T., Parnall, L. K. S., Knox, C., Vargo, J., Oliver, A., Merry, S., Klugh, A., Bubar, N., Anderson, N., Rieman, L., Walnoha, W., Smith, H., & Rice, S. (2007). Bismuth Subgallate/Borneol (Suile) Is Superior to Bacitracin in the Human Forearm Biopsy Model for Acute Wound Healing. Advances in Skin & Wound Care, 20(9), 485–492. https://doi.org/10.1097/01.ASW.0000288208.85807.b8
Shaikh, S., Nazam, N., Rizvi, S. M. D., Ahmad, K., Baig, M. H., Lee, E. J., & Choi, I. (2019). Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. International Journal of Molecular Sciences, 20(10), 2468. https://doi.org/10.3390/ijms20102468
Sherman, R. A. (2014). Mechanisms of Maggot-Induced Wound Healing: What Do We Know, and Where Do We Go from Here? Evidence-Based Complementary and Alternative Medicine, 2014, 1–13. https://doi.org/10.1155/2014/592419
Short, B., Bakri, A., Baz, A., Williams, C., Brown, J., & Ramage, G. (2023). There Is More to Wounds than Bacteria: Fungal Biofilms in Chronic Wounds. Current Clinical Microbiology Reports, 10(1), 9–16. https://doi.org/10.1007/s40588-022-00187-x
Silhavy, T. J., Kahne, D., & Walker, S. (2010). The Bacterial Cell Envelope. Cold Spring Harbor Perspectives in Biology, 2(5), a000414–a000414. https://doi.org/10.1101/cshperspect.a000414
Singh, A., Van Hamme, J. D., & Ward, O. P. (2007). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 25(1), 99–121. https://doi.org/10.1016/j.biotechadv.2006.10.004
Singh, R., Ray, P., Das, A., & Sharma, M. (2010). Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. Journal of Antimicrobial Chemotherapy, 65(9), 1955–1958. https://doi.org/10.1093/jac/dkq257
Sionov, R. V., & Steinberg, D. (2022). Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms, 10(6), 1239. https://doi.org/10.3390/microorganisms10061239
Smith, A. G., Powis, R. A., Pritchard, D. I., & Britland, S. T. (2006). Greenbottle (Lucilia sericata) Larval Secretions Delivered from a Prototype Hydrogel Wound Dressing Accelerate the Closure of Model Wounds. Biotechnology Progress, 22(6), 1690–1696. https://doi.org/10.1021/bp0601600
Soriano-García, F. (2010). Aspectos farmacocinéticos y farmacodinámicos para la lectura interpretada del antibiograma. Enfermedades Infecciosas y Microbiología Clínica, 28(7), 461–466. https://doi.org/10.1016/j.eimc.2010.02.005
Soto, S. M. (2013). Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 4(3), 223–229. https://doi.org/10.4161/viru.23724
Stashak, T. S., Farstvedt, E., & Othic, A. (2004). Update on wound dressings: Indications and best use. Clinical Techniques in Equine Practice, 3(2), 148–163. https://doi.org/10.1053/j.ctep.2004.08.006
Steed, D. L. (2004). Debridement. The American Journal of Surgery, 187(5), S71–S74. https://doi.org/10.1016/S0002-9610(03)00307-6
Steenvoorde, P., & Jukema, G. N. (2004). The antimicrobial activity of maggots: In-vivo results. Journal of Tissue Viability, 14(3), 97–101. https://doi.org/10.1016/S0965-206X(04)43005-8
Stewart, P. S. (2002). Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology, 292(2), 107–113. https://doi.org/10.1078/1438-4221-00196
Stewart, S., & Richardson, D. W. (2019). Surgical Site Infection and the Use of Antimicrobials. En Auer, Kummerle, & Prange (Eds.), Equine Surgery (5ta ed., pp. 77–103). Elsevier. https://doi.org/10.1016/B978-0-323-48420-6.00007-7
Stick, J. A., & Prange, T. (2019a). Integumentary System. En Auer, Kummerle, & Prange (Eds.), Equine Surgery (5ta ed., pp. 367–439). Elsevier. https://doi.org/10.1016/C2015-0-05672-6
Stick, J. A., & Prange, T. (2019b). Surgical Biology. En Auer, Kummerle, & Prange (Eds.), Equine Surgery (5ta ed., pp. 1–122). Elsevier. https://doi.org/10.1016/C2015-0-05672-6
Sun, M., Zhou, Z., Dong, J., Zhang, J., Xia, Y., & Shu, R. (2016). Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria. Microbial Pathogenesis, 99, 196–203. https://doi.org/10.1016/j.micpath.2016.08.025
Tacconelli, E., & Pezzani, M. D. (2019). Public health burden of antimicrobial resistance in Europe. The Lancet Infectious Diseases, 19(1), 4–6. https://doi.org/10.1016/S1473-3099(18)30648-0
Tamma, P. D., Cosgrove, S. E., & Maragakis, L. L. (2012). Combination Therapy for Treatment of Infections with Gram-Negative Bacteria. Clinical Microbiology Reviews, 25(3), 450–470. https://doi.org/10.1128/CMR.05041-11
Theoret, C. L. (2005). The pathophysiology of wound repair. Veterinary Clinics of North America: Equine Practice, 21(1), 1–13. https://doi.org/10.1016/j.cveq.2004.11.001
Theoret, C. L., & Stashak, T. S. (2014). Integumentary System. En Equine Emergencies (4ta ed., pp. 238–267). Elsevier. https://doi.org/10.1016/B978-1-4557-0892-5.00019-2
Theoret, C., & Schumacher, J. (Eds.). (2016). Equine Wound Management (1ra ed.). Wiley. https://doi.org/10.1002/9781118999219.fmatter
Tolker‐Nielsen, T. (2014). Pseudomonas aeruginosa biofilm infections: From molecular biofilm biology to new treatment possibilities. APMIS, 122(s138), 1–51. https://doi.org/10.1111/apm.12335
Tolker-Nielsen, T. (2015). Biofilm Development. Microbiology Spectrum, 3(2), 3.2.21. https://doi.org/10.1128/microbiolspec.MB-0001-2014
Treepong, P., Kos, V. N., Guyeux, C., Blanc, D. S., Bertrand, X., Valot, B., & Hocquet, D. (2018). Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clinical Microbiology and Infection, 24(3), 258–266. https://doi.org/10.1016/j.cmi.2017.06.018
Tremblay, Y. D. N., Hathroubi, S., & Jacques, M. (2014). Bacterial biofilms: Their importance in animal health and public health. Canadian Journal of Veterinary Research = Revue Canadienne De Recherche Veterinaire, 78(2), 110–116.
Uldahl, M., & Clayton, H. M. (2019). Lesions associated with the use of bits, nosebands, spurs and whips in Danish competition horses. Equine Veterinary Journal, 51(2), 154–162. https://doi.org/10.1111/evj.12827
Vallet-Regí, M., González, B., & Izquierdo-Barba, I. (2019). Nanomaterials as Promising Alternative in the Infection Treatment. International Journal of Molecular Sciences, 20(15), 3806. https://doi.org/10.3390/ijms20153806
Van Hamme, J. D., Singh, A., & Ward, O. P. (2006). Physiological aspects. Biotechnology Advances, 24(6), 604–620. https://doi.org/10.1016/j.biotechadv.2006.08.001
Vanegas, J. M., & Jiménez, J. N. (2020). Resistencia antimicrobiana en el siglo XXI: ¿hacia una era postantibiótica? Revista Facultad Nacional de Salud Pública, 38(1), 1–6. https://doi.org/10.17533/udea.rfnsp.v38n1e337759
Vatistas, N. J., Meagher, D. M., Gillis, C. L., & Neves, J. W. (1995). Gunshot injuries in horses: 22 cases (1971-1993). Journal of the American Veterinary Medical Association, 207(9), 1198–1200.
Vermeulen, H., Van Hattem, J. M., Storm-Versloot, M. N., Ubbink, D. T., & Westerbos, S. J. (2007). Topical silver for treating infected wounds. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD005486.pub2
Vert, M., Doi, Y., Hellwich, K.-H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377–410. https://doi.org/10.1351/PAC-REC-10-12-04
Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, Volume 12, 1227–1249. https://doi.org/10.2147/IJN.S121956
Wei, D., Zhu, X.-M., Chen, Y.-Y., Li, X.-Y., Chen, Y.-P., Liu, H.-Y., & Zhang, M. (2019). Chronic wound biofilms: Diagnosis and therapeutic strategies. Chinese Medical Journal, 132(22), 2737–2744. https://doi.org/10.1097/CM9.0000000000000523
Weigelt, M. A., McNamara, S. A., Sanchez, D., Hirt, P. A., & Kirsner, R. S. (2021). Evidence-Based Review of Antibiofilm Agents for Wound Care. Advances in Wound Care, 10(1), 13–23. https://doi.org/10.1089/wound.2020.1193
Westall, F., De Wit, M. J., Dann, J., Van Der Gaast, S., De Ronde, C. E. J., & Gerneke, D. (2001). Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Research, 106(1–2), 93–116. https://doi.org/10.1016/S0301-9268(00)00127-3
Westgate, S. J., Percival, S. L., Knottenbelt, D. C., Clegg, P. D., & Cochrane, C. A. (2011). Microbiology of equine wounds and evidence of bacterial biofilms. Veterinary Microbiology, 150(1–2), 152–159. https://doi.org/10.1016/j.vetmic.2011.01.003
Whitaker, I. S., Twine, C., Whitaker, M. J., Welck, M., Brown, C. S., & Shandall, A. (2007). Larval therapy from antiquity to the present day: Mechanisms of action, clinical applications and future potential. Postgraduate Medical Journal, 83(980), 409–413. https://doi.org/10.1136/pgmj.2006.055905
Wild, T., Wiegand, C., & Kamolz, L. (2016). Clinical Practice. Use of bismuth in wound care: Review and case report. 7(3), 34–39.
Wolcott, R. D., & Cox, S. (2013). More effective cell-based therapy through biofilm suppression. Journal of Wound Care, 22(Sup1), S26–S30. https://doi.org/10.12968/jowc.2013.22.Sup1.S26
Wolcott, R. D., & Fletcher, J. (2014). The role of wound cleansing in the management of wounds. 5(3), 25–31.
Wolcott, R. D., Rumbaugh, K. P., James, G., Schultz, G., Phillips, P., Yang, Q., Watters, C., Stewart, P. S., & Dowd, S. E. (2010). Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. Journal of Wound Care, 19(8), 320–328. https://doi.org/10.12968/jowc.2010.19.8.77709
Wolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., Fresta, M., Nie, G., Chen, C., Shen, H., Ferrari, M., & Zhao, Y. (2015). Safety of Nanoparticles in Medicine. Current Drug Targets, 16(14), 1671–1681. https://doi.org/10.2174/1389450115666140804124808
Wu, Y.-K., Cheng, N.-C., & Cheng, C.-M. (2019). Biofilms in Chronic Wounds: Pathogenesis and Diagnosis. Trends in Biotechnology, 37(5), 505–517. https://doi.org/10.1016/j.tibtech.2018.10.011
Yang, Q., Larose, C., Della Porta, A. C., Schultz, G. S., & Gibson, D. J. (2017). A surfactant‐based wound dressing can reduce bacterial biofilms in a porcine skin explant model. International Wound Journal, 14(2), 408–413. https://doi.org/10.1111/iwj.12619
Yang, Q., Phillips, P. L., Sampson, E. M., Progulske‐Fox, A., Jin, S., Antonelli, P., & Schultz, G. S. (2013). Development of a novel ex vivo porcine skin explant model for the assessment of mature bacterial biofilms. Wound Repair and Regeneration, 21(5), 704–714. https://doi.org/10.1111/wrr.12074
Zhao, G., Usui, M. L., Underwood, R. A., Singh, P. K., James, G. A., Stewart, P. S., Fleckman, P., & Olerud, J. E. (2012). Time course study of delayed wound healing in a biofilm‐challenged diabetic mouse model. Wound Repair and Regeneration, 20(3), 342–352. https://doi.org/10.1111/j.1524-475X.2012.00793.x
Zoutman, D., McDonald, S., & Vethanayagan, D. (1998). Total and Attributable Costs of Surgical-Wound Infections at a Canadian Tertiary-Care Center. Infection Control and Hospital Epidemiology, 19(4), 254–259. https://doi.org/10.1086/647804
Zumbado, R., Barquero, A., & Hidalgo Mora, O. (2022). Resistencia a los antibióticos: Una Revisión Bibliográfica. Revista Ciencia y Salud Integrando Conocimientos, 6(3), 145–153. https://doi.org/10.34192/cienciaysalud.v6i3.500
Zunino, P. (2018). Historia y perspectivas del enfoque “Una Salud.” Veterinaria (Montevideo), 54(210), 46–51. https://doi.org/10.29155/VET.54.210.8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciencias Veterinarias
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Licensing of articles
All articles will be published under a license:
Licencia Creative Commons Atribución-NoComercial-SinDerivadas 3.0 Costa Rica.
Access to this journal is free of charge, only the article and the journal must be cited in full.
Intellectual property rights belong to the author. Once the article has been accepted for publication, the author assigns the reproduction rights to the Journal.
Ciencias Veterinarias Journal authorizes the printing of articles and photocopies for personal use. Also, the use for educational purposes is encouraged. Especially: institutions may create links to specific articles found in the journal's server in order to make up course packages, seminars or as instructional material.
The author may place a copy of the final version on his or her server, although it is recommended that a link be maintained to the journal's server where the original article is located.
Intellectual property violations are the responsibility of the author. The company or institution that provides access to the contents, either because it acts only as a transmitter of information (for example, Internet access providers) or because it offers public server services, is not responsible.