Diferente desarrollo cefálico según tipo de conejo
DOI:
https://doi.org/10.15359/rcv.36-2.2Palabras clave:
conejo “belier”, conejo “toy”, gerontomorfia, Oryctolagus cuniculus, pedomorfiaResumen
Como alometría se entiende el crecimiento relativo de una estructura biológica respecto a otra(s) o al organismo total y da cuenta de los cambios de conformación que derivan de la modificación de tamaño. Un caso particular es cuando la velocidad de crecimiento es la misma entre los caracteres en estudio, lo cual recibe el nombre de isometría. A fin de estudiar este fenómeno en el conejo doméstico, se colectó un total de 71 cadáveres frescos de conejos, de diferente edad, correspondientes a animales destetados, y se obtuvo por descarnado el cráneo de cada uno. De ellos, 59 correspondían al tipo de compañía (tipos “toys” y “beliers”) y 12 al tipo carnicero (californiano/neozelandés). Se captó una imagen digital, en la cara lateral, de cada cráneo, sobre la que posteriormente se situaron 12 hitos anatómicos, analizados mediante métodos de morfometría geométrica. Los conejos de carne presentaron un comportamiento claramente isométrico, mientras que los de compañía, y a pesar de que muchos ya eran adultos, este comportamiento era alométrico. Nos encontramos, pues, ante un caso de gerontomorfia en los conejos de carne —un desarrollo precoz— y una pedomorfia en los de compañía —un retardo en su crecimiento, puesto que, aunque adultos, siguen presentando una cara corta y plana, y un cráneo proporcionalmente grande, caracteres típicamente juveniles—. Para los primeros un desarrollo lo más precoz posible y para los segundos una retención de los caracteres juveniles; en ambos tipos, ejemplo de heterocronías de desarrollo.
Referencias
Ávila, D. 2017. Variaciones alométricas durante el crecimiento en siete especies de Garzas (Aves: Ardeidae). Rev Biol Trop 65 (4): 1347–1357.
Bolstad, G.H., Cassara, J.A., Márquez, E., Hansen, T.F., van der Linde, K., Houle, D. & Pélabon, C. 2015. Complex constraints on allometry revealed by artificial Selection on the wing of Drosophila Melanogaster. Proc Natl Acad Sci U.S.A 112 (43): 13284–13289. Doi:10.1073/pnas.1505357112.
Cardini, A. & Polly, P.D. 2013. Larger mammals have longer faces because of size-related constraints on skull form. Nat Commun 4 (2458): 1–7. Doi:10.1038/ncomms3458.
Domínguez-Viveros, J., Rodríguez-Almeida, F.A., Núñez-Domínguez, R., Ramírez-Valverde, R., Ortega-Gutiérrez, J.A. & Ruiz-Flores, A. 2013. Ajuste de modelos no lineales y estimación de parámetros de crecimiento en bovinos tropicarne. Agrociencia 47 (1): 25–34.
Galán, C. 2010. Evolución de la fauna cavernícola: mecanismos y procesos que explican el origen de las especies troglobias. Bol Soc Venez Espeleol: 1–31.
Gould, S.J. 1966. Allometry and size in ontogeny and phylogeny. Biol Rev Camb Philos Soc 41 (4): 587–640. Doi:10.1111/j.1469-185X.1966.tb01624.x.
Hammer, Ø., Harper, D.A.T. & Ryan, P.D. 2001. PAST v. 2.17c. Palaeontol Electron 4 (1): 1–229.
Klingenberg, C.P. 2011. MorphoJ: An integrated software package for geometric morphometrics. Mol Ecol Resour 11 (2): 353–357. Doi:10.1111/j.1755-0998.2010.02924.x.
Klingenberg, C.P. 2016. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev Genes Evol 226 (3): 113–137. Doi:10.1007/s00427-016-0539-2.
Mitteroecker, P., Gunz, P., Windhager, S. & Schaefer, K. 2013. A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix 24 (1): 59–66. Doi: doi.org/10.4404/hystrix-24.1-6369
Parés-Casanova, P.M., Caballero-Sala, M. & Perezgrovas, R. 2016. Age changes in Chiapas sheep breed according to sex. Rev Investig Vet Peru 27 (4): 651-657. Doi:10.15381/rivep.v27i4.12642.
Rohlf, F.J. 2015. TpsSmall v. 1.33. http://life.bio.sunysb.edu/morph/. http://life.bio.sunysb.edu/morph/.
Rohlf, F.J. 2016. TpsDig v. 2.26. http://life.bio.sunysb.edu/morph/index.html. http://life.bio.sunysb.edu/morph/.
Toro Ibacache, M.V., Manriquez Soto, G. & Suazo Galdames, I. 2010. Morfometría geométrica y el estudio de las formas biológicas: de la morfología descriptiva a la morfología cuantitativa. Int J Morphol 28 (4): 977–990. Doi:10.4067/S0717-95022010000400001.
Voje, K.L., Hansen, T.F., Egset, C.K., Bolstad, G.H. & Pélabon, C. 2014. Allometric constraints and the evolution of allometry. Evolution 68 (3): 866–885. Doi:10.1111/evo.12312.
Publicado
Cómo citar
Número
Sección
Licencia
Licenciamiento de los artículos
Todo artículo se publicará con una licencia:
Licencia Creative Commons Atribución-NoComercial-SinDerivadas 3.0 Costa Rica.
El acceso a esta revista es gratuito, solo se debe citar en forma completa el artículo y la revista.
Los derechos de propiedad intelectual son del autor. Una vez aceptado el artículo para su publicación el autor cede a la Revista los derechos de reproducción.
La Revista de Ciencias Veterinarias autoriza la impresión de artículos y fotocopias para uso personal. También, se promueve el uso para fines educacionales. Especialmente: instituciones podrán crear enlaces a artículos específicos que se encuentren en el servidor de la revista a fin de conformar paquetes de cursos, seminarios o como material de instrucción.
El autor puede colocar una copia de la versión definitiva en su servidor aunque se recomienda que mantenga un enlace al servidor de la revista donde está el artículo original.
Las violaciones de propiedad intelectual recaen sobre quien la realizó. No es responsable la empresa o institución que da acceso a los contenidos, ya sea porque actúa sólo como transmisora de información (por ejemplo, proveedores de acceso a Internet) o porque ofrece servicios públicos de servidores.