Estrategias para el manejo de heridas crónicas complicadas con biopelícula de bacterias multirresistentes en equinos: revisión bibliográfica, diagnóstico y protocolo de tratamiento

Autores/as

DOI:

https://doi.org/10.15359/rcv.42-1.1

Palabras clave:

Heridas crónicas, multirresistencia, biopelícula, antimicrobianos alternativos, equinos

Resumen

El propósito de este artículo es discutir algunos hechos relevantes hallados en varios casos clínicos de resistencia antibiótica tratados en equinos con la meta de hacer conciencia sobre el problema, revisar la literatura especializada en el tema y proponer alternativas terapéuticas diferentes al uso de los antibióticos disponibles. El tracto fistuloso ejemplifica una herida crónica y se manifiesta como un túnel subcutáneo con egreso a piel que permite la salida de secreción contaminada. Cuando el tracto está infectado con bacterias multirresistentes y presencia de biopelícula entonces el tratamiento médico es bastante más complicado, prolongado en el tiempo y caro debido al costo de procedimientos diagnósticos, manejo veterinario, medicamentos e internamiento hospitalario ocupado en muchos casos, además de que generalmente no se puede efectuar el uso zootécnico esperado para el animal hasta que el mismo sane y su precio se devalúa por la lesión. El rol de las biopelículas bacterianas en heridas con infección crónica es abordado y en vista de la dificultad para identificarlas, se aconseja buscar los signos clínicos específicos sugerentes del problema y aplicar el “Algoritmo Diagnóstico de Percival” para la detección de biopelícula. El tratamiento debería basarse en desbridamiento repetido y aplicación de terapia antimicrobiana tópica, sin recetar antibióticos sistémicos a menos que existan signos de infección generalizada. Se discuten un protocolo de tratamiento para mejorar el manejo de la lesión y la utilización de sustancias antisépticas alternativas a los antibióticos convencionales actuales, además de aplicación de conceptos de UNA SALUD para lidiar con el problema.

Referencias

Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. (2022). Resistencia Antibacteriana. https://www.argentina.gob.ar/anmat/ram/organismos

Alós, J. I. (2015). Resistencia bacteriana a los antibióticos: Una crisis global [Antibiotic resistance: A global crisis]. Enfermedades infecciosas y microbiología clínica, 33(10), 692–699. https://doi.org/10.1016/j.eimc.2014.10.004

Alverdy J.C., Hyman, N., & Gilbert, J. (2020). Re-examining causes of surgical site infections following elective surgery in the era of asepsis. The Lancet Infectious Diseases, 20(3), e38-e43. https://doi.org/10.1016/S1473-3099(19)30756-X

AMR Action Fund. (2022). Next Generation Antibiotics. https://www.amractionfund.com/amr-innovation-challenge

Anglen, J., Gainor, B., Simpson, W., & Christensen, G. (2003). The use of detergent irrigation for musculoskeletal wounds. International Orthopaedics, 27(1), 40-46. https://doi.org/10.1007/s00264-002-0398-5

Armstrong, D., Bauer, K., Greg Bohn, G., Carter, M., Snyder, R., & Serena, T. (2020). Principles of best diagnostic practice in tissue repair and wound healing: an expert consensus. Diagnostics, 11(1), 50. https://doi.org/10.3390/diagnostics11010050

Attinger, C., & Wolccott, R. (2012). Clinically addressing Biofilm in Chronic Wounds. Advances in Wound Care (New Rochelle), 1(3), 127-132. https://doi.org/10.1089/wound.2011.0333

Atkin, L., & Rippon, M. (2016). Autolysis: mechanisms of action in the removal of devitalised tissue. British Journal of Nursing, 25(Supl. 20), S40-S47. https://doi.org/10.12968/bjon.2016.25.20.S40

Asma, S.T., Imre, K., Morar, A., Herman, V., Acaroz, U., Mukhtar, H., Arslan, D., Shah, S., & Gerlach, R. (2022). An Overview of Biofilm formation-combatin strategies and mechanisms of action of antibiofilm agents. Life, 12(8), 1110. https://doi.org/10.3390/life12081110

Auer, J.A., & Kummerle, J.A. (2019). Surgical Methods. En Auer, Stick, Kummerle & Prange (Eds.), Equine Surgery (5ta ed., pp. 123-300). Elsevier. https://doi.org/10.1016/C2015-0-05672-6

Babalska, Z., Korbecka, M., & Karpiński, T. (2021). Wound Antiseptics and European Guidelines for Antiseptic Application in Wound Treatment. Pharmaceuticals, 14(12), 1253. https://doi.org/10.3390/ph14121253

Baker, P., Hill, P., Snarr, B., Alnabelseya, N., Pestrak, M., Lee, M., Jennings, L., Tam, J., Melnyk, R., Parsek , M., Sheppard, D., Wozniak ,D., & Howell, L. (2016). Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Science Advances, 2(5), e1501632. https://doi.org/10.1126/sciadv.1501632

Banat, I.M., De Rienzo, M.A.D. & Quinn, G.A. (2014). Microbial biofilms: biosurfactants as antibiofilm agents. Applied Microbiology and Biotechnology, 98, 9915–9929. https://doi.org/10.1007/s00253-014-6169-6

Banerjee, J., Das Ghatak, P., Roy, S., Khanna, S., Hemann, C., Deng, B., Das, A., Zweier, J., Wozniak, D., & Sen, C.K. (2015). Silver-Zinc Redox-Coupled Electroceutical Wound Dressing Disrupts Bacterial Biofilm. PLOS ONE, 10(3), e0119531. https://doi.org/10.1371/journal.pone.0119531

Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-Strategies to Fight Multidrug Resistant Bacteria - “A Battle of the Titans”. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01441

Barrantes, K., Chacón, L., & Arias, M. (2022). El impacto de la resistencia a los antibióticos en el desarrollo sostenible. Población y Salud en Mesoamérica, 19(2), 321-345. https://doi.org/10.15517/psm.v0i19.47590

Barrientos, S., Brem, H., Stojadinovic, O., & Tomic-Canic, M. (2014). Clinical application of growth factors and cytokines in wound healing. Wound Repair and Regeneration, 22(5), 569-578. https://doi.org/10.1111/wrr.12205

Bexfield, A., , Bond, E., Roberts, E., Dudley, E., Nigam,Y., Thomas, S., Newton, R., & Ratcliffe, N. (2008). The antibacterial activity against MRSA strains and other bacteria of a <500Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes and Infection,10(4), 325-333. https://doi.org/10.1016/j.micinf.2007.12.011

Bianchera, A., Buttini, F., & Bettini, R. (2020). Micro/nanosystems and biomaterials for controlled delivery of antimicrobial and anti-biofilm agents. Expert Opinion on Therapeutic Patents, 30(12), 983-1000. https://doi.org/10.1080/13543776.2020.1839415

Bianchi, T., Wolcott, R., Peghetti, A., Leaper, D., Cutting, K., Polignano, R., Rosa Rita, Z., Moscatelli, A., Greco, A., Romanelli, M., Pancani, S., Bellingeri, A., Ruggeri, V., Postacchini, L., Tedesco, S., Manfredi, L., Camerlingo, M., Rowan, S., Gabrielli, A., & Pomponio, G. (2016). Recommendations for the management of biofilm: a consensus document. Journal of Wound Care, 25(6), 305-17. https://doi.org/10.12968/jowc.2016.25.6.305

Bischofberger, A.S. (2019). Drains, Bandages and External Coaptation. En Auer, Stick, Kummerle & Prange (Eds.), Equine Surgery (5ta ed., pp. 280-300). Elsevier. https://doi.org/10.1016/B978-0-323-48420-6.00017-X

Bjarnsholt, T. (2013). The role of bacterial biofilms in chronic infections. APMIS, 121(Supl. 136), 1-51. https://doi.org/10.1111/apm.12099

Bjarnsholt, T., Alhede, M., Eickhardt, S., Moser, C., Kühl, M., Østrup ,P., & Høiby, N. (2013). The in vivo biofilm. Trends in Microbiology, 21(9), 466-474. https://doi.org/10.1016/j.tim.2013.06.002

Bobrov, A.G., Getnet, D., Swierczewski, B., Jacobs, A., Medina, M., Tyner, S., Watters, C., & Antonic, V. (2022). Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military-relevant animal infection models. APMIS, 130(7), 436-457. https://doi.org/10.1111/apm.13119

Bonnichsen, L., Svenningsen, N., Rybtke,M., de Bruijn,I., Raaijmakers, J., Tolker, T., & Nybroe, O. ( 2015). Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomona fluorescens SBW25 biofilms. Microbiology (Reading), 161(12), 2289-2297. https://doi.org/10.1099%2Fmic.0.000191

Bosanquet, D.C., & Harding, K.G. (2014). Wound duration and healing rates: cause or effect? Wound Repair and Regeneration, 22(2),143-50. https://doi.org/10.1111/wrr.12149

Bowler, P. G. (2018). Antibiotic resistance and biofilm tolerance: a combined threat in the treatment of chronic infections. Journal of Wound Care, 27(5), 273-277. https://doi.org/10.12968/jowc.2018.27.5.273

Boyd, N., & Nailor, M. (2011). Combination antibiotic therapy for empiric and definitive treatment of gram-negative infections: insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy, 31(11), 1073-84. https://doi.org/10.1592/phco.31.11.1073

Brackman, G., & Coenye, T. (2015). Quorum sensing inhibitors as anti-biofilm agents. Current Pharmaceutical Design, 21(1), 5-11. https://doi.org/10.2174/1381612820666140905114627

Brumbaugh, G.W. (2005). Use of antimicrobials in wound management. Veterinary Clinics of North America: Equine Practice, 21(1), 63-75. https://doi.org/10.1016/j.cveq.2004.11.012

Butler, J.A., Colles, C.M., Dyson, S.J., Kold, S.E., & Poulos, P.W. (2017). Clinical Radiology of the Horse (2da ed.). John Wiley & Sons, Ames.

Cardona, M.A., Enríquez, J., Ramos, A., Padilla, C., & Vidal, A. (2016). Fístula cutánea y granuloma a cuerpo extraño por material de sutura. Presentación de un caso. Revista del Centro Dermatológico Pascua, 25(2),53-57. https://www.medigraphic.com/pdfs/derma/cd-2016/cd162b.pdf

Cartee, R. E., & Rumph, P. F. (1984). Ultrasonographic detection of fistulous tracts and foreign objects in muscles of horses. Journal of the American Veterinary Medical Association, 184(9), 1127-32. https://pubmed.ncbi.nlm.nih.gov/6725130/N

Cassiday, L. (2021). Emulsions: making oil and water mix. The American Oil Chemists’ Society (AOCS) Magazine. https://www.aocs.org/stay-informed/inform-magazine/featured-articles/emulsions-making-oil-and-water-mix-april-2014?SSO=True#:~:text= Surfactant

Centers for Disease Control and Prevention. (2022). COVID-19: U.S. Impact on Antimicrobial

Resistance. Special Report 2022. https://dx.doi.org/10.15620/cdc:117915

Cheng, D., Lian-Hui, Z., & Zeling, X. (2021). Harnessing the CRISPR-Cas Systems to Combat Antimicrobial Resistence. Frontiers in Microbiology, 12, 716064. https://doi.org/10.3389/fmicb.2021.716064

Chindera, K., Mahato, M., Sharma, A.K., Horsley, H., Kloc-Muniak, K., Kamaruzzaman, N.F., Kumar, S., McFarlane, A., Stach, J., Bentin, T., & Good, L. (2016). The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Nature Scientific Reports, 6, 23121. https://doi.org/10.1038/srep23121

Chung, P.Y., & Khanum, R.J. (2017). Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. Journal of Microbiology, Immunology and Infection, 50(4), 405-410. https://doi.org/10.1016/j.jmii.2016.12.005

Collier, M., & Hofer, P. (2017) Taking wound cleansing seriously to minimize risk. Wounds UK, 13(1), 58–64. https://www.wounds-uk.com/journals/issue/51/article-details/taking-wound-cleansing-seriously-to-minimise-risk

Coraça, D.C., Steixner , S., Wurm , A., & Nogler, M. (2021). Antibacterial and Anti-Biofilm Activity of Omega-3 Polyunsaturated Fatty Acids against Periprosthetic Joint Infections-Isolated Multi-Drug Resistant Strains. Biomedicines, 9(4), 334. https://doi.org/10.3390/biomedicines9040334

Cortell, C., Gaspar, M., Achau, R., Delgado, T., & Hortelano, A. (2019). Terapia de presión negativa con instilación para el tratamiento de heridas infectadas: recomendaciones de utilización basadas en la evidencia. Farmacia Hospitalaria, 43(1), 6-12. https://dx.doi.org/10.7399/fh.11011

Cos, P., Toté, K., Horemans, T., & Maes, L. (2010). Biofilms: an extra hurdle for effective antimicrobial therapy. Current Pharmaceutical Design, 16(20), 2279-2295. https://doi.org/10.2174/138161210791792868

Cowan, T. (2015). Is there a difference between debridement and desloughing? British Journal of Nursing, 24(Supl. 15). https://doi.org/10.12968/bjon.2015.24.Sup15.S18

Crespo, R., Ong, A., Albasha, O., Bass, K., & Arany, P. (2019). Photobiomodulation Therapy for Wound Care: A Potent, Noninvasive, Photoceutical Approach. Advances In Skin & Wound Care, 32(4),157-167. https://doi.org/10.1097/01.ASW.0000553600.97572.d2

Daeschlein, G., Napp, M., Assadian, O., Von Podewils, S., Reese, K., Hinz, P., Matiasek, J., Spitzmueller, R., Humphreys, P., Jünger, M., & Kramer, A. (2017). Viability of Lucilia sericata maggots after exposure to wound antiseptics. International Wound Journal, 14(3), 512-515. https://doi.org/10.1111/iwj.12637

Dalton, T., Dowd S., Wolcott, R.D., Sun, Yan, Watters, C., Griswold, J., & Rumbaugh, K. (2011). An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLOS One, 6(11), e27317. https://doi.org/10.1371/journal.pone.0027317

Dart, A.J., Sole, A., & Stashak, T.S. (2016). Management Practices that Influence Wound Infection and Healing. En Theoret, C., & Schumacher, J. (Eds.), Equine Wound Management (3ra ed., pp. 47-74). Wiley Online Library. https://doi.org/10.1002/9781118999219.ch4

Darvishi, S., Tavakoli, Sh., Kharaziha, M., Girault, H., Kaminski, C., & Mela, I. (2022). Advances in the Sensing and Treatment of Wound Biofilms. Angewandte Chemie, 61(13), e202112218. https://doi.org/10.1002/anie.202112218

Das Ghatak, P., Mathew, S., Pandey, P. Roy, S., & Sen, C.K. (2018). A surfactant polymer dressing potentiates antimicrobial efficacy in biofilm disruption. Scientific Reports, 8, 873. https://doi.org/10.1038/s41598-018-19175-7

Dawgul, M., Maciejewska, M., Jaskiewicz, M., Karafova, A., & Kamysz, W. (2014). Antimicrobial peptides as potential tool to fight bacterial biofilm. Acta Poloniae Pharmaceutica, 71(1), 39-47. https://www.ptfarm.pl/pub/File/Acta_Poloniae/2014/1/039.pdf

Dias, D., Borges, A., Oliveira, D., Martínez, A., Saavedra, M., & Simões, M. (2018). Biofilms and antibiotic susceptibility of multidrug-resistant bacteria from wild animals. PeerJ, 6, e4974. https://doi.org/10.7717/peerj.4974

Diban, F., Di Lodovico, S., Di Fermo, P., D’Ercole, S., D’Arcangelo, S., Di Giulio, M., & Cellini, L. (2023). Biofilms in Chronic Wound Infections: Innovative Antimicrobial Approaches Using the In Vitro Lubbock Chronic Wound Biofilm Model. International Journal of Molecular Sciences, 24(2), 1004. https://doi.org/10.3390/ijms24021004

DISARM Act of 2021, H.R.4127, 117th Congress (2021). https://www.congress.gov/bill/117th-congress/house-bill/4127/text

Donné, J. & Dewilde, S. (2015). The Challenging World of Biofilm Physiology. Advances in Microbial Physiology, 67, 235-92. http://dx.doi.org/10.1016/bs.ampbs.2015.09.003

Dos Santos, C. A., Seckler, M. M., Ingle, A. P., Gupta, I., Galdiero, S., Galdiero, M., & Rai, M. (2014). Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues. Journal of Pharmaceutical Sciences, 103(7), 1931–1944. https://doi.org/10.1002/jps.24001

Dow, G. (2001). Infection in chronic wounds. En Kraner, D., Rodeheaver, G.T., & Sibbald, R.G. (Eds.), Chronic Wound Care: A Clinical Source Book for Healthcare Professionals. (3ra ed., p. 343). Wayne, PA. H.M. Communications.

Eggleston, R. B. (2018). Wound Management: Wounds with Special Challenges. Veterinary Clinics of North America: Equine Practice, 34(3), 511-538. https://doi.org/10.1016/j.cveq.2018.07.003

Engelke, K., & Oldhafer, K.J. (2010). Prevention of postoperative wound infections. Der Chirurg, 81(6), 577-85. https://doi.org/10.1007/s00104-009-1860-3

Estrada-McDermott, J., Montero, J., Vargas, J., & Estrada-Umaña, M. (2016). Trauma de la pared torácica y manejo del neumotórax en equinos: reporte de un caso clínico atendido bajo condiciones de campo. Ciencias Veterinarias, 33(2), 67-79. https://doi.org/10.15359/rcv.33-2.2

Estrada-McDermott, J. & Estrada-Umaña, M. (2020). Manual de Introducción a la Radiología Equina. Primera Edición. Programa de Publicaciones Universidad Nacional, Costa Rica (Cod: 1865-20-P.UNA). https://repositorio.una.ac.cr/bitstream/handle/11056/23798/ManualRadiologiaEquina.pdf?sequence=1&isAllowed=y

European Medicines Agency. (2022). Guideline on the application of Article 34 of Regulation 5 (EU) 2019/6. Classification of veterinary medicinal products (prescription status) – Draft. Committee for Veterinary Medicinal Products. https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/draft-guideline-application-article-34-regulation-eu-2019/6-classification-veterinary-medicinal-products-prescription-status_en.pdf

Falanga, V., Isseroff, R.R., Soulika, A.M., Romanelli, M., Margolis, D., Kapp, S., Granick, M., & Harding, K. (2022). Chronic wounds. Nature reviews. Disease primers, 8(1), 50. https://doi.org/10.1038/s41572-022-00377-3

Farr, A.C., Hawkins, J.F., Baird, D.K., & Moore, G.E. (2010). Wooden, metallic, hair, bone, and plant foreign bodies in horses: 37 cases (1990-2005). Journal of the American Veterinary Medical Association, 237(10), 1173–1179. https://doi.org/10.2460/javma.237.10.1173

Fekrazad, R., Asefi , S., Allahdadi , M., & Kalhori, K. (2016). Effect of Photobiomodulation on Mesenchymal Stem Cells. Photomedicine and laser surgery, 34(11), 533–542. https://doi.org/10.1089/pho.2015.4029

Fischbach, M. A. (2011). Combination therapies for combating antimicrobial resistance. Current Opinions on Microbiology, 14(5): 519-523. https://doi.org/10.1016/j.mib.2011.08.003

Flemming, H., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9): 623-633. https://doi.org/10.1038/nrmicro2415

Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., & Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563-75. https://doi.org/10.1038/nrmicro.2016.94

Flemming, H.C., & Wuertz, S. (2019). Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews Microbiology, 17, 247-260. https://doi.org/10.1038/s41579-019-0158-9

Flores da Silva, K., & Teixeira, M. (2013). Unveiled the larval therapy as alternative in the treatment of skin lesions: An integrative review. Revista de Pesquisa Cuidado é Fundamental Online, 5(3), 66-74. https://doi.org/10.9789/2175-5361

Fonder, M.A., Lazarus, G.S., Cowan, D.A., Aronson-Cook, B., Kohli, A.R., & Mamelak, A.J. (2008). Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. Journal of the American Academy of Dermatology, 58(2), 185–206. https://doi.org/10.1016/j.jaad.2007.08.048

Food and Drug Administration. (2018). Tecnología avanzada esclarece la resistencia a los antibióticos. https://www.fda.gov/consumers/articulos-para-el-consumidor-en-espanol/fda-tecnologia-avanzada-esclarece-la-resistencia-los-antibioticos

Gabriel, A. (2022). Wound irrigation. Medscape. https://emedicine.medscape.com/article/1895071-overview

Gift, L. J., & DeBowes, R. M. (1989). Wounds associated with osseous sequestration and penetrating foreign bodies. Veterinary Clinics of North America: Equine Practice, 5(3), 695-708. https://doi.org/10.1016/s0749-0739(17)30583-7

Gilbert, P., & Moore, L.E. (2005). Cationic antiseptics: diversity of action under a common epithet. Journal of Applied Microbiology, 99, 703-715. https://doi.org/10.1111/j.1365-2672.2005.02664.x

Gillespie, C., Hawkins, J., J. Li, Connell, S., Miller, M., Saenger, M., & Freeman, L. (2017). Effects of topical application of silver sulfadiazine cream, triple antimicrobial ointment, or hyperosmolar nanoemulsion on wound healing, bacterial load, and exuberant granulation tissue formation in bandaged full-thickness equine skin wounds. American journal of veterinary research, 78(5), 638–646. https://doi.org/10.2460/ajvr.78.5.638

Ghosh, Ch., Paramita, S., Issa, R., & Haldar, J. (2019). Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Review Special Issue: Antimicrobial Resistance and Novel Therapeutics, 27(4), 323-338. https://doi.org/10.1016/j.tim.2018.12.010

Grothier, L. (2015). Improving clinical outcomes and patient experience through the use of desloughing. British journal of community nursing, Supl. Wound Care, S25–S31. https://doi.org/10.12968/bjcn.2015.20.Sup9.S25

Gupta, A., Mumtaz, S., Li, C.-H., Hussain, I., & Rotello, V. M. (2018). Combatting antibiotic-resistant bacteria using nanomaterials. Chemical Society Reviews, 48(2), 415-427. https://doi.org/10.1039/c7cs00748e

Gupta, R., & Xie, H. (2018). Nanoparticles in Daily Life: Applications, Toxicity and Regulations. Journal of Environmental Pathology. Toxicology and Oncology, 37(3), 209– 230. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2018026009

Hanson, R.R. (2018). Medical Therapy in Equine Wound Management. The Veterinary clinics of North America. Equine practice, 34(3), 591–603. https://doi.org/10.1016/j.cveq.2018.07.008

Harries, R., Bosanquet, D., & Harding, K. (2016). Wound bed preparation: TIME for an update. International wound journal, 13(Supl. 3), 8–14. https://doi.org/10.1111/iwj.12662

Hendrickson, D.A. (2019). Management of Superficial Wounds, Deep and Chronic Wounds, Sinus Tracts, and Fistula. En Auer, Stick, Kummerle & Prange (Eds.), Equine Surgery, (5ta ed., pp.403-425). Elsevier. https://doi.org/10.1016/B978-0-323-48420-6.00027-2

Hendrickson, D.A., & Virgin, J. (2005). Factors that affect equine wound repair. The Veterinary clinics of North America. Equine practice, 21, 33-44. https://doi.org/10.1016/j.cveq.2004.11.002

Hendrix, S.M., & Baxter, G.M. (2005). Management of complicated wounds. The Veterinary clinics of North America. Equine practice, 21(1), 217-30. https://doi.org/10.1016/j.cveq.2004.11.011

Hernández, R., Velasco, D., Diaz, D., Arevalo, K., Garza, M., de la Garza, M., & Cabral, C. (2012). Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. International Journal of Nanomedicine, 7, 2109-2013. https://doi.org/10.2147/IJN.S29854

Hernando, S., Alcalde, M., Gil, T., Valverde, J., & Martínez, J. (2020). Inhibition of the Pseudomonas aeruginosa Quorum Sensing Response Is Based on its Time-Dependent Competition with N-(3-Oxo-dodecanoyl)-L-homoserine Lactone for LasR Binding. Frontiers in Molecular Biosciences, 7, 25. https://doi.org/10.3389/fmolb.2020.00025

Horsley, V. (2022). Adipocyte plasticity in tissue regeneration, repair, and disease.

Current Opinion in Genetics & Development, 76, 101968. https://doi.org/10.1016/j.gde.2022.101968

Høiby, N., Bjarnsholt, T., Moser, C., Bassi, G.L., Coenye, T., Donelli, G., Hall-Stoodley, L., Holá, V., Imbert, C., Kirketerp-Møller, K., Lebeaux, D., Oliver, A., Ullmann, A.J., Williams, C., & ESCMID Study Group for Biofilms and Consulting External Expert Werner Zimmerli. (2015). ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 21 Supl. 1, S1–S25. https://doi.org/10.1016/j.cmi.2014.10.024

Huang, Y., Cambre, M., & Lee, H. (2017). The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. International Journal of Molecular Sciences, 18(12), 2702. https://doi.org/10.3390/ijms18122702

Hübner, N.O., Matthes, R., & Koban, I. (2010a). Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown in polystyrene and silicone materials. Skin pharmacology and physiology, Supl. 23, 28–34. https://doi.org/10.1159/000318265

Hübner, N., Siebert, J., & Kramer, A. (2010b). Octenidine Dihydrochloride, a Modern Antiseptic for Skin, Mucous Membranes and Wounds. Skin pharmacology and physiology, 23, 244–258. https://doi.org/10.1159/000314699

Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156 (2), 128-145. https://doi.org/10.1016/j.jconrel.2011.07.002

Hunt, R. J., Allen, D., & Mueller, P.O. (1991). Intracranial trauma associated with extraction of a temporal ear tooth (dentigerous cyst) in a horse. The Cornell veterinarian, 81(2), 103–108. https://pubmed.ncbi.nlm.nih.gov/2029835/

Iliescu, M., Paek, L., Dao, L., Rouchet, N., Efanov, J.I., Édouard, C., & Danino, M.A. (2019). In-situ characterization of the bacterial biofilm associated with XeroformTM and KaltostatTM dressings and evaluation of their effectiveness on thin skin engraftment donor sites in burn patients. Burns, 45(5), 1122-1130. https://doi.org/10.1016/j.burns.2019.02.024

Inceoglu, R., & Gencosmanoglu, R. (2003). Fistulotomy and drainage of deep postanal space abscess in the treatment of posterior horseshoe fistula. BMC Surgery, 3(10). https://doi.org/10.1186/1471-2482-3-10

Jakobsen, T.H., Bjarnsholt, T., Jensen, P.Ø., Givskov, M., & Høiby, N. (2013). Targeting quorum sensing in Pseudomonas aeruginosa biofilms: current and emerging inhibitors. Future microbiology, 8(7), 901–921. https://doi.org/10.2217/fmb.13.57

James, G.A., Swogger, E., Wolcott, R., Pulcini, E., Secor, P., Sestrich, J., Costerton, J.W., & Stewart, P.S. (2008). Biofilms in chronic wounds. Wound repair and regeneration, 16(1), 37-44. https://doi.org/10.1111/j.1524-475X.2007.00321.x

Jann, H., & Pasquini, C. (2005). Wounds of the distal limb complicated by involvement of deep structures. The Veterinary clinics of North America. Equine practice, 21(1), 145-65. https://doi.org/10.1016/j.cveq.2004.11.008

Jones, S. (2012). Engineering control in biofilms. Nature Biotechnology, 30, 251. https://doi.org/10.1038/nbt.2162

Jørgensen, E., Bjarnsholt, T., & Jacobsen, S. (2021). Biofilm and Equine Limb Wounds. Animals, 11(10), 2825. https://doi.org/10.3390/ani11102825

Joyce, J.L. (2007). Injury to synovial structures. The Veterinary clinics of North America. Equine practice, 23(1), 103-16. https://doi.org/10.1016/j.cveq.2006.12.001

Junka, A., Bartoszewicz, M., Smutnicka, D., Secewicz, A., & Szymczyk, P. (2014). Efficacy of Antiseptics Containing Povidone-Iodine, Octenidine Dihydrochloride and Ethacridine Lactate against Biofilm Formed by Pseudomonas aeruginosa and Staphylococcus aureus Measured with the Novel Biofilm-Oriented Antiseptics Test. International Wound Journal, 11(6), 730-734. https://doi.org/10.1111/iwj.12057

Kaehn, K. (2010). Polihexanide: a safe and highly effective biocide. Skin pharmacology and physiology, Supl. 23, 7-16. https://doi.org/10.1159/000318237

Kamaruzzaman, N., Tan, L., Mat, K., Saeed, Sh., Hamdan, R., Choong, S., Wong, W., Chivu, A., & Gibson, A. (2018). Targeting the Bacterial Protective Armour; Challenges and Novel Strategies in the Treatment of Microbial Biofilm. Materials, 11(9), 1705. https://doi.org/10.3390/ma11091705

Kamus, L., & Theoret, Ch. (2018). Choosing the Best Approach to Wound Management and Closure. The Veterinary clinics of North America. Equine practice, 34(3), 499-509. https://doi.org/10.1016/j.cveq.2018.07.005

Kane, D.P. (2001). Chronic wound healing and chronic wound management. En Krasner, D.L, Rodeheaver, G.T., & Sibbald, R.G. (Eds.), Chronic Wound Care. (3ta ed., p.7). Wayne Pa. HMP Communications.

Käser, H. (2016). Naturkosmetische Rohstoffe: Wirkung, Verarbeitung, kosmetischer Einsatz. Ed. Freya Verlag (office@freya.at), Berlin. ISBN 10: 3990250124

Kaur, B., Gupta, J., Sharma, S., Sharma, D., & Sharma, S. (2021). Focused review on dual inhibition of quorum sensing and efflux pumps: A potential way to combat multi drug resistant Staphylococcus aureus infections. International journal of biological macromolecules, 190, 33–43. https://doi.org/10.1016/j.ijbiomac.2021.08.199

Keast, D., Swanson, T., Carville, K., Fletcher, J., Schultz, G., & Black, J. (2014). Ten top tips. Understanding and managing wound biofilm. Wounds International, 5, 22-4. https://www.woundsinternational.com/resources/details/ten-top-tips-understanding-and-managing-wound-biofilm

Khatoon, Z. , Christopher D. McTiernan, C.D. , Erik J. Suuronen, E.J., Thien-Fah Mah , & Alarcón, E.I. (2018). Formación de biopelículas bacterianas en dispositivos implantables y enfoques para su tratamiento y prevención. Heliyón, 4(12), e01067. https://doi.org/10.1016/j.heliyon.2018.e01067

Kim, P.J., Attinger, C.E., Constantine, T., Crist, B.D., Faust, E., Hirche, C.R., Lavery, L.A., Messina, V.J., Ohura, N., Punch, L.J., Wirth, G.A., Younis, I., & Téot, L. (2020). Negative pressure wound therapy with instillation: International consensus guidelines update. International Wound Journal, 17(1), 174-186. https://doi.org/10.1111/iwj.13254

King, C.J. (2020). Changing attitudes toward maggot debridement therapy in wound treatment: a review and discussion. Wound Care, 29(Sup2c), S28-S34. https://doi.org/10.12968/jowc.2020.29.Sup2c.S28

Klauder, J.V. (1958). Interrelations of human and veterinary medicine: Discussion of some aspects of comparative dermatology. New England Journal of Medicine, 258 (4), 170-177. https://www.nejm.org/doi/pdf/10.1056/NEJM195801232580405

Knottenbelt, D.C. (2002). Handbook of Equine Wound Management. Saunders. Phil. ISBN-13: 978-0702026935.

Kramer, A., Dissemond, J., Kim, S., Willy, Ch., Mayer, D., Papke, R., Tuchmann, F., & Assadian, O. (2018). Consensus on Wound Antisepsis: Update. Skin pharmacology and physiology, 31, 28-58. https://doi.org/10.1159/000481545.

Krasowski, G. , Junka, A. , Paleczny, J. , Czajkowska, J. , Makomaska, E., Chodaczek, G. , Majkowski, M. , Migdał, P. , Fijałkowski, K. , Kowalska, B., & Bartoszewicz, M. (2021). In Vitro Evaluation of Polihexanide, Octenidine and NaClO/HClO-Based Antiseptics against Biofilm Formed by Wound Pathogens. Membranes, 11(1), 62. https://doi.org/10.3390/membranes11010062.

Launois, T., Moor, P.L., Berthier, A., Merlin, N., Rieu, F., Schlotterer, C., Siegel, A., Fruit, G., Dugdale, A., & Vandeweerd, J. (2021). Use of negative pressure wound therapy in the treatment of limb wounds: a case series of 42 horses. Journal of equine veterinary science, 106, 103725. https://doi.org/10.1016/j.jevs.2021.103725

Laverty, S., Lavoie, J.P., Pascoe, J. R., & Ducharme, N. (1996). Penetrating wounds of the thorax in 15 horses. Equine veterinary journal, 28(3), 220–224. https://doi.org/10.1111/j.2042-3306.1996.tb03776.x

Lee, N., Ko, W., & Hsueh, P. (2019). Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms. Frontiers in Pharmacology, 10, 1153. https://doi.org/10.3389/fphar.2019.01153

Leaper, D. (2002). Sharp technique for wound debridement. World Wide Wounds. http://www.worldwidewounds.com/2002/december/Leaper/Sharp-Debridement.html

Lima, R., Del Fiol, F. S., & Balcão, V. M. (2019). Prospects for the Use of New Technologies to Combat Multidrug-Resistant Bacteria. Frontiers in Pharmacology, 10, 692. https://doi.org/10.3389/fphar.2019.00692

Louis, M., Clamens, T., Tahrioui, A., Desriac, F., Rodrigues, S., Rosay, T., Harmer, N., Diaz, S., Barreau, M., Racine, P.J., Kipnis, E., Grandjean, T., Vieillard, J., Bouffartigues, E., Cornelis, P., Chevalier, S., Feuilloley, M.G.J., & Lesouhaitier, O. (2022). Pseudomonas aeruginosa Biofilm Dispersion by the Human Atrial Natriuretic Peptide. Advanced Science, 9(7), e2103262. https://doi.org/10.1002/advs.202103262

Magee, A.A., Ragle, C.A., & Howlett, M.R. (1997). Use of tenoscopy for management of septic tenosynovitis caused by a penetrating porcupine quill in the synovial sheath surrounding the digital flexor tendons of a horse. Journal of the American Veterinary Medical Association, 210(12), 1768–1770. https://pubmed.ncbi.nlm.nih.gov/9187727/

Magiorakos, A., Srinivasan, A., Carey, R., Carmeli, Y., Falagas, M., Giske, C., & Monnet, D. (2012). Multidrug-resistant, extensively drug-resistant and pandrugresistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3): 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570

Maillard , J., Kampf , G., & Cooper, R. (2021). Antimicrobial stewardship of antiseptics that are pertinent to wounds: the need for a united approach. JAC-antimicrobial resistance, 3(1), dlab027. https://doi.org/10.1093/jacamr/dlab027

Maliha, M., Brammananth, R., Dyson, J., Coppel, R., Werrett, M., Andrews, P., & Batchelor, W. (2021). Biocompatibility and selective antibacterial activity of a bismuth phosphinato-nanocellulose hydrogel. Cellulose, 28, 4701-4718. https://doi.org/10.1007/s10570-021-03835-5

Malone, M., Bjarnsholt, T., McBain, A.J., James, G.A., Stoodley, P., Leaper, D., Tachi, M., Schultz, G., Swanson, T., & Wolcott, R.D. (2017). The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. Journal of Wound Care, 26(1), 20-25. https://doi.org/10.12968/jowc.2017.26.1.20

Malpass, K.G., Snelling, C., & Tron, V. (2003). Comparison of Donor-Site Healing under Xeroform and Jelonet dressings: Unexpected Findings. Plastic and reconstructive surgery, 112(2), 430–439. https://doi.org/10.1097/01.PRS.0000070408.33700.C7

Mangkorntongsakul, V., & Oarkley, A. (2019). Wound Cleansers. DermNet NZ. https://dermnetnz.org/topics/wound-cleansers

Marchant, R., & Banat, I.M. (2012). Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnology letters, 34(9), 1597–1605. https://doi.org/10.1007/s10529-012-0956-x

Margolin, L., & Gialanella, P. (2010). Assessment of the antimicrobial properties of maggots. International Wound Journal, 7(3), 202-204. https://doi.org/10.1111/j.1742-481X.2010.00234.x.

McDonnell, G., & Russell, A. (1999). Antiseptics and disinfectants: Activity, action and resistance. Clinical Microbiology Reviews, 12(1), 147-179. https://doi.org/10.1128/CMR.12.1.147

Müller, G., & Kramer, A. (2008). Biocompatibility Index of Antiseptic Agents by Parallel Assessment of Antimicrobial Activity and Cellular Cytotoxicity. Journal of Antimicrobial Chemotherapy, 61(6), 1281-1287. https://doi.org/10.1093/jac/dkn125.199912.

Munsterman, A.S., & Reid, R. (2014). Trauma and wound management: gunshot wounds in horses. The Veterinary clinics of North America. Equine practice, 30(2), 453–ix. https://doi.org/10.1016/j.cveq.2014.04.007

Münzer, B., & Lubczyk, B. (1992). The ultrasonic diagnosis of foreign bodies in the horse. Berliner und Munchener tierarztliche Wochenschrift, 105(12), 397–400. https://pubmed.ncbi.nlm.nih.gov/1492833/

Newton, H., Edwards, J., Mitchell, L., & Percival, S.L. (2017). Role of slough and biofilm in delaying healing in chronic wounds. British journal of nursing (Mark Allen Publishing), 26(Sup20a), S4–S11. https://doi.org/10.12968/bjon.2017.26.Sup20a.S4

Norman, G., Dumville, J.C., Mohapatra, D.P., Owens, G.L., & Crosbie, E.J. (2016). Antibiotics and antiseptics for surgical wounds healing by secondary intention. The Cochrane database of systematic reviews, 3(3), CD011712. https://doi.org/10.1002/14651858.CD011712.pub2

Nusbaum, A., Gil, J., Rippy, M., Warne, B., Valdes, J., Claro, A., & Davis, S.C. (2012). Effective method to remove wound bacteria: comparison of various debridement modalities in an in vivo porcine model. The Journal of surgical research, 176(2), 701–707. https://doi.org/10.1016/j.jss.2011.11.1040

Organización Mundial de la Salud. (2016). Plan de Acción Mundial sobre la Resistencia a los Antimicrobianos. Http://Www.Who.Int/Antimicrobial-Resistance/Global-Action-Plan/Es/

Organización Mundial de la Salud. (2017). Lista Organización Mundial de la Salud de patógenos prioritarios para la I+D de nuevos antibióticos. https://www.who.int/es/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.

Ortega-Peña, S., & Hernández-Zamora, E. (2018). Biopelículas microbianas y su impacto en áreas médicas: fisiopatología, diagnóstico y tratamiento. Boletín médico del Hospital Infantil de México, 75(2), 79–88. https://doi.org/10.24875/BMHIM.M18000012

Ospina, M. (2021). Bacterias y súper bacterias ponen en riesgo la salud humana. Boletín OPS/OMS. https://www.paho.org/es/noticias/4-3-2021-bacterias-super-bacterias-ponen-riesgo-salud-humana

Ousey, K., & McIntosh, C. (2010). Understanding wound bed preparation and wound debridement. British journal of community nursing, 15(3). https://doi.org/10.12968/bjcn.2010.15.Sup12.S22

Ovens, L., & Irving, S. (2018). Advances in wound cleansing: an integrated approach. Wounds UK, 14(1), 58-63. https://www.woundsinternational.com/resources/details/advances-wound-cleansing-integrated-approach

Parrilli, E., Tutino, M.L., & Marino, G. (2022). Biofilm as an adaptation strategy to extreme conditions. Rendiconti Lincei. Scienze Fisiche e Naturali, 33, 527–536. https://doi.org/10.1007/s12210-022-01083-8

Parsek, M. R., & Greenberg, E.P. (2005). Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in Microbiology, 13(1), 27-33. https://doi.org/10.1016/j.tim.2004.11.007

PASTEUR Act of 2021. S. 2076. 117th Congress (2021). https://www.congress.gov/bill/117th-congress/senate-bill/2076/text

Peloso, J. G., Nickels, F. A., & Stickle, R. L. (1991). What is your diagnosis? Deep fistula with possible foreign body. Journal of the American Veterinary Medical Association, 199(7), 923–924. https://pubmed.ncbi.nlm.nih.gov/1769883/

Percival, S. L., Chen, R., Mayer, D., & Salisbury, A. (2018). Mode of action of poloxamer‐based surfactants in wound care and efficacy on biofilms. International Wound Journal, 15(5), 749–755. https://doi.org/10.1111/iwj.12922

Percival, S. L., Finnegan, S., Donelli, G., Vuotto, C., Rimmer, S., & Lipsky, B. A. (2014). Antiseptics for treating infected wounds: Efficacy on biofilms and effect of pH. Critical Reviews in Microbiology, 1–17. https://doi.org/10.3109/1040841X.2014.940495

Percival, S. L., Mayer, D., Kirsner, R. S., Schultz, G., Weir, D., Roy, S., Alavi, A., & Romanelli, M. (2019). Surfactants: Role in biofilm management and cellular behaviour. International Wound Journal, 16(3), 753–760. https://doi.org/10.1111/iwj.13093

Percival, S. L., Mayer, D., Malone, M., Swanson, T., Gibson, D., & Schultz, G. (2017). Surfactants and their role in wound cleansing and biofilm management. Journal of Wound Care, 26(11), 680–690. https://doi.org/10.12968/jowc.2017.26.11.680

Percival, S. L., & Suleman, L. (2015). Slough and biofilm: Removal of barriers to wound healing by desloughing. Journal of Wound Care, 24(11), 498–510. https://doi.org/10.12968/jowc.2015.24.11.498

Percival, S. L., Vuotto, C., Donelli, G., & Lipsky, B. A. (2015). Biofilms and Wounds: An Identification Algorithm and Potential Treatment Options. Advances in Wound Care, 4(7), 389–397. https://doi.org/10.1089/wound.2014.0574

Petrova, O., & Sauer, K. (2016). Escaping the biofilm in more than one way: desorption, detachment or dispersion. Current Opinion in Microbiology, 30, 67-78. http://dx.doi.org/10.1016/j.mib.2016.01.004

Pilcher, M. (2016). Wound cleansing: A key player in the implementation of the TIME paradigm. Journal of Wound Care, 25(Sup3), S7–S9. https://doi.org/10.12968/jowc.2016.25.Sup3.S7

Pletzer, D., Coleman, S. R., & Hancock, R. E. (2016). Anti-biofilm peptides as a new weapon in antimicrobial warfare. Current Opinion in Microbiology, 33, 35–40. https://doi.org/10.1016/j.mib.2016.05.016

Rademacher, N., Fürst, A., & Kaser‐Hotz, B. (2006). Ultrasonographic detection of a wooden foreign body in a horse. Veterinary Record, 158(21), 739–740. https://doi.org/10.1136/vr.158.21.739

Rajput, A., Bhamare, K. T., Thakur, A., & Kumar, M. (2022). Biofilm-i: A Platform for Predicting Biofilm Inhibitors Using Quantitative Structure—Relationship (QSAR) Based Regression Models to Curb Antibiotic Resistance. Molecules, 27(15), 4861. https://doi.org/10.3390/molecules27154861

Ramón, P., Sati, H., & Galas, M. (2018). Enfoque de Una Salud en las acciones para enfrentar la resistencia a los antimicrobianos desde una óptica latinoamericana. Revista Peruana de Medicina Experimental y Salud Pública, 35(1), 103. https://doi.org/10.17843/rpmesp.2018.351.3605

Real Academia Española. (s.f.). Desbridar. Diccionario de la lengua española (23a ed.). Recuperado en 18 de noviembre de 2023, de https://dle.rae.es/desbridar.

Rebello, S., Asok, A. K., Mundayoor, S., & Jisha, M.S. (2013). Surfactants: Chemistry, Toxicity and Remediation. En Lichtfouse, E., Schwarzbauer, J., & Robert, D. (Eds.), Pollutant Diseases, Remediation and Recycling (277-320). Springer. https://doi.org/10.1007/978-3-319-02387-8

Rezaie, P., Pourhajibagher, M., Chiniforush, N., Hosseini, N., & Bahador, A. (2018). The Effect of Quorum-Sensing and Efflux Pumps Interactions in Pseudomonas aeruginosa Against Photooxidative Stress. Journal of Lasers in Medical Sciences, 9(3), 161–167. https://doi.org/10.15171/jlms.2018.30

Rodríguez-López, L., López-Prieto, A., Lopez-Álvarez, M., Pérez-Davila, S., Serra, J., González, P., Cruz, J. M., & Moldes, A. B. (2020). Characterization and Cytotoxic Effect of Biosurfactants Obtained from Different Sources. ACS Omega, 5(48), 31381–31390. https://doi.org/10.1021/acsomega.0c04933

Rumbaugh, K. P., & Sauer, K. (2020). Biofilm dispersion. Nature Reviews Microbiology, 18(10), 571–586. https://doi.org/10.1038/s41579-020-0385-0

Rybtke, M., Hultqvist, L. D., Givskov, M., & Tolker-Nielsen, T. (2015). Pseudomonas aeruginosa Biofilm Infections: Community Structure, Antimicrobial Tolerance and Immune Response. Journal of Molecular Biology, 427(23), 3628–3645. https://doi.org/10.1016/j.jmb.2015.08.016

Saeed, K., McLaren, A. C., Schwarz, E. M., Antoci, V., Arnold, W. V., Chen, A. F., Clauss, M., Esteban, J., Gant, V., Hendershot, E., Hickok, N., Higuera, C. A., Coraça‐Huber, D. C., Choe, H., Jennings, J. A., Joshi, M., Li, W. T., Noble, P. C., Phillips, K. S., … Witsø, E. (2019). 2018 international consensus meeting on musculoskeletal infection: Summary from the biofilm workgroup and consensus on biofilm related musculoskeletal infections. Journal of Orthopaedic Research, 37(5), 1007–1017. https://doi.org/10.1002/jor.24229

Sánchez-Gómez, S., Ferrer-Espada, R., Stewart, P. S., Pitts, B., Lohner, K., & Martínez De Tejada, G. (2015). Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms. BMC Microbiology, 15(1), 137. https://doi.org/10.1186/s12866-015-0473-x

Sanidad Gobierno Español (2022). Campaña para uso responsable de antibióticos. https://antibioticos.sanidad.gob.es/ne-health-una-solageneral-bacterias.htm

Scalise, A., Bianchi, A., Tartaglione, C., Bolletta, E., Pierangeli, M., Torresetti, M., Marazzi, M., & Di Benedetto, G. (2015). Microenvironment and microbiology of skin wounds: The role of bacterial biofilms and related factors. Seminars in Vascular Surgery, 28(3–4), 151–159. https://doi.org/10.1053/j.semvascsurg.2016.01.003

Schultz, G. S., Barillo, D. J., Mozingo, D. W., & Chin, G. A. (2004). Wound bed preparation and a brief history of TIME. International Wound Journal, 1(1), 19–32. https://doi.org/10.1111/j.1742-481x.2004.00008.x

Schultz, G. S., Bjarnsholt, T., James, G. A., Leaper, D. J., McBain, A. J., Malone, M., Stoodley, P., Swanson, T., Tachi, M., Wolcott, R. D., & for the Global Wound Biofilm Expert Panel. (2017). Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair and Regeneration, 25(5), 744–757. https://doi.org/10.1111/wrr.12590

Schultz, G. S., Sibbald, R. G., Falanga, V., Ayello, E. A., Dowsett, C., Harding, K., Romanelli, M., Stacey, M. C., Teot, L., & Vanscheidt, W. (2003). Wound bed preparation: A systematic approach to wound management. Wound Repair and Regeneration, 11(s1). https://doi.org/10.1046/j.1524-475X.11.s2.1.x

Schultz, G. S., Woo, K., Weir, D., & Yang, Q. (2018). Effectiveness of a monofilament wound debridement pad at removing biofilm and slough: Ex vivo and clinical performance. Journal of Wound Care, 27(2), 80–90. https://doi.org/10.12968/jowc.2018.27.2.80

Schumacher, J. (2019). Testis. En Auer, Kummerle, & Prange (Eds.), Equine Surgery (5ta ed., pp. 994–1034). Elsevier. https://doi.org/10.1016/B978-0-323-48420-6.00060-0

Serena, T. E., Bayliff, S. W., & Brosnan, P. J. (2022). Bacterial protease activity: A prognostic biomarker of early wound infection. Journal of Wound Care, 31(4), 352–355. https://doi.org/10.12968/jowc.2022.31.4.352

Serena, T. E., Bayliff, S. W., Brosnan, P. J., DiMarco, D. T., Doner, B. A., Guthrie, D. A., Patel, K. D., Sabo, M. J., Samies, J. H., & Carter, M. J. (2021). Bacterial protease activity as a biomarker to assess the risk of non‐healing in chronic wounds: Results from a multicentre prospective cohort clinical trial. Wound Repair and Regeneration, 29(5), 752–758. https://doi.org/10.1111/wrr.12941

Serena, T., Parnall, L. K. S., Knox, C., Vargo, J., Oliver, A., Merry, S., Klugh, A., Bubar, N., Anderson, N., Rieman, L., Walnoha, W., Smith, H., & Rice, S. (2007). Bismuth Subgallate/Borneol (Suile) Is Superior to Bacitracin in the Human Forearm Biopsy Model for Acute Wound Healing. Advances in Skin & Wound Care, 20(9), 485–492. https://doi.org/10.1097/01.ASW.0000288208.85807.b8

Shaikh, S., Nazam, N., Rizvi, S. M. D., Ahmad, K., Baig, M. H., Lee, E. J., & Choi, I. (2019). Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. International Journal of Molecular Sciences, 20(10), 2468. https://doi.org/10.3390/ijms20102468

Sherman, R. A. (2014). Mechanisms of Maggot-Induced Wound Healing: What Do We Know, and Where Do We Go from Here? Evidence-Based Complementary and Alternative Medicine, 2014, 1–13. https://doi.org/10.1155/2014/592419

Short, B., Bakri, A., Baz, A., Williams, C., Brown, J., & Ramage, G. (2023). There Is More to Wounds than Bacteria: Fungal Biofilms in Chronic Wounds. Current Clinical Microbiology Reports, 10(1), 9–16. https://doi.org/10.1007/s40588-022-00187-x

Silhavy, T. J., Kahne, D., & Walker, S. (2010). The Bacterial Cell Envelope. Cold Spring Harbor Perspectives in Biology, 2(5), a000414–a000414. https://doi.org/10.1101/cshperspect.a000414

Singh, A., Van Hamme, J. D., & Ward, O. P. (2007). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 25(1), 99–121. https://doi.org/10.1016/j.biotechadv.2006.10.004

Singh, R., Ray, P., Das, A., & Sharma, M. (2010). Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. Journal of Antimicrobial Chemotherapy, 65(9), 1955–1958. https://doi.org/10.1093/jac/dkq257

Sionov, R. V., & Steinberg, D. (2022). Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms, 10(6), 1239. https://doi.org/10.3390/microorganisms10061239

Smith, A. G., Powis, R. A., Pritchard, D. I., & Britland, S. T. (2006). Greenbottle (Lucilia sericata) Larval Secretions Delivered from a Prototype Hydrogel Wound Dressing Accelerate the Closure of Model Wounds. Biotechnology Progress, 22(6), 1690–1696. https://doi.org/10.1021/bp0601600

Soriano-García, F. (2010). Aspectos farmacocinéticos y farmacodinámicos para la lectura interpretada del antibiograma. Enfermedades Infecciosas y Microbiología Clínica, 28(7), 461–466. https://doi.org/10.1016/j.eimc.2010.02.005

Soto, S. M. (2013). Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 4(3), 223–229. https://doi.org/10.4161/viru.23724

Stashak, T. S., Farstvedt, E., & Othic, A. (2004). Update on wound dressings: Indications and best use. Clinical Techniques in Equine Practice, 3(2), 148–163. https://doi.org/10.1053/j.ctep.2004.08.006

Steed, D. L. (2004). Debridement. The American Journal of Surgery, 187(5), S71–S74. https://doi.org/10.1016/S0002-9610(03)00307-6

Steenvoorde, P., & Jukema, G. N. (2004). The antimicrobial activity of maggots: In-vivo results. Journal of Tissue Viability, 14(3), 97–101. https://doi.org/10.1016/S0965-206X(04)43005-8

Stewart, P. S. (2002). Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology, 292(2), 107–113. https://doi.org/10.1078/1438-4221-00196

Stewart, S., & Richardson, D. W. (2019). Surgical Site Infection and the Use of Antimicrobials. En Auer, Kummerle, & Prange (Eds.), Equine Surgery (5ta ed., pp. 77–103). Elsevier. https://doi.org/10.1016/B978-0-323-48420-6.00007-7

Stick, J. A., & Prange, T. (2019a). Integumentary System. En Auer, Kummerle, & Prange (Eds.), Equine Surgery (5ta ed., pp. 367–439). Elsevier. https://doi.org/10.1016/C2015-0-05672-6

Stick, J. A., & Prange, T. (2019b). Surgical Biology. En Auer, Kummerle, & Prange (Eds.), Equine Surgery (5ta ed., pp. 1–122). Elsevier. https://doi.org/10.1016/C2015-0-05672-6

Sun, M., Zhou, Z., Dong, J., Zhang, J., Xia, Y., & Shu, R. (2016). Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria. Microbial Pathogenesis, 99, 196–203. https://doi.org/10.1016/j.micpath.2016.08.025

Tacconelli, E., & Pezzani, M. D. (2019). Public health burden of antimicrobial resistance in Europe. The Lancet Infectious Diseases, 19(1), 4–6. https://doi.org/10.1016/S1473-3099(18)30648-0

Tamma, P. D., Cosgrove, S. E., & Maragakis, L. L. (2012). Combination Therapy for Treatment of Infections with Gram-Negative Bacteria. Clinical Microbiology Reviews, 25(3), 450–470. https://doi.org/10.1128/CMR.05041-11

Theoret, C. L. (2005). The pathophysiology of wound repair. Veterinary Clinics of North America: Equine Practice, 21(1), 1–13. https://doi.org/10.1016/j.cveq.2004.11.001

Theoret, C. L., & Stashak, T. S. (2014). Integumentary System. En Equine Emergencies (4ta ed., pp. 238–267). Elsevier. https://doi.org/10.1016/B978-1-4557-0892-5.00019-2

Theoret, C., & Schumacher, J. (Eds.). (2016). Equine Wound Management (1ra ed.). Wiley. https://doi.org/10.1002/9781118999219.fmatter

Tolker‐Nielsen, T. (2014). Pseudomonas aeruginosa biofilm infections: From molecular biofilm biology to new treatment possibilities. APMIS, 122(s138), 1–51. https://doi.org/10.1111/apm.12335

Tolker-Nielsen, T. (2015). Biofilm Development. Microbiology Spectrum, 3(2), 3.2.21. https://doi.org/10.1128/microbiolspec.MB-0001-2014

Treepong, P., Kos, V. N., Guyeux, C., Blanc, D. S., Bertrand, X., Valot, B., & Hocquet, D. (2018). Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clinical Microbiology and Infection, 24(3), 258–266. https://doi.org/10.1016/j.cmi.2017.06.018

Tremblay, Y. D. N., Hathroubi, S., & Jacques, M. (2014). Bacterial biofilms: Their importance in animal health and public health. Canadian Journal of Veterinary Research = Revue Canadienne De Recherche Veterinaire, 78(2), 110–116.

Uldahl, M., & Clayton, H. M. (2019). Lesions associated with the use of bits, nosebands, spurs and whips in Danish competition horses. Equine Veterinary Journal, 51(2), 154–162. https://doi.org/10.1111/evj.12827

Vallet-Regí, M., González, B., & Izquierdo-Barba, I. (2019). Nanomaterials as Promising Alternative in the Infection Treatment. International Journal of Molecular Sciences, 20(15), 3806. https://doi.org/10.3390/ijms20153806

Van Hamme, J. D., Singh, A., & Ward, O. P. (2006). Physiological aspects. Biotechnology Advances, 24(6), 604–620. https://doi.org/10.1016/j.biotechadv.2006.08.001

Vanegas, J. M., & Jiménez, J. N. (2020). Resistencia antimicrobiana en el siglo XXI: ¿hacia una era postantibiótica? Revista Facultad Nacional de Salud Pública, 38(1), 1–6. https://doi.org/10.17533/udea.rfnsp.v38n1e337759

Vatistas, N. J., Meagher, D. M., Gillis, C. L., & Neves, J. W. (1995). Gunshot injuries in horses: 22 cases (1971-1993). Journal of the American Veterinary Medical Association, 207(9), 1198–1200.

Vermeulen, H., Van Hattem, J. M., Storm-Versloot, M. N., Ubbink, D. T., & Westerbos, S. J. (2007). Topical silver for treating infected wounds. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD005486.pub2

Vert, M., Doi, Y., Hellwich, K.-H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377–410. https://doi.org/10.1351/PAC-REC-10-12-04

Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, Volume 12, 1227–1249. https://doi.org/10.2147/IJN.S121956

Wei, D., Zhu, X.-M., Chen, Y.-Y., Li, X.-Y., Chen, Y.-P., Liu, H.-Y., & Zhang, M. (2019). Chronic wound biofilms: Diagnosis and therapeutic strategies. Chinese Medical Journal, 132(22), 2737–2744. https://doi.org/10.1097/CM9.0000000000000523

Weigelt, M. A., McNamara, S. A., Sanchez, D., Hirt, P. A., & Kirsner, R. S. (2021). Evidence-Based Review of Antibiofilm Agents for Wound Care. Advances in Wound Care, 10(1), 13–23. https://doi.org/10.1089/wound.2020.1193

Westall, F., De Wit, M. J., Dann, J., Van Der Gaast, S., De Ronde, C. E. J., & Gerneke, D. (2001). Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Research, 106(1–2), 93–116. https://doi.org/10.1016/S0301-9268(00)00127-3

Westgate, S. J., Percival, S. L., Knottenbelt, D. C., Clegg, P. D., & Cochrane, C. A. (2011). Microbiology of equine wounds and evidence of bacterial biofilms. Veterinary Microbiology, 150(1–2), 152–159. https://doi.org/10.1016/j.vetmic.2011.01.003

Whitaker, I. S., Twine, C., Whitaker, M. J., Welck, M., Brown, C. S., & Shandall, A. (2007). Larval therapy from antiquity to the present day: Mechanisms of action, clinical applications and future potential. Postgraduate Medical Journal, 83(980), 409–413. https://doi.org/10.1136/pgmj.2006.055905

Wild, T., Wiegand, C., & Kamolz, L. (2016). Clinical Practice. Use of bismuth in wound care: Review and case report. 7(3), 34–39.

Wolcott, R. D., & Cox, S. (2013). More effective cell-based therapy through biofilm suppression. Journal of Wound Care, 22(Sup1), S26–S30. https://doi.org/10.12968/jowc.2013.22.Sup1.S26

Wolcott, R. D., & Fletcher, J. (2014). The role of wound cleansing in the management of wounds. 5(3), 25–31.

Wolcott, R. D., Rumbaugh, K. P., James, G., Schultz, G., Phillips, P., Yang, Q., Watters, C., Stewart, P. S., & Dowd, S. E. (2010). Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. Journal of Wound Care, 19(8), 320–328. https://doi.org/10.12968/jowc.2010.19.8.77709

Wolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., Fresta, M., Nie, G., Chen, C., Shen, H., Ferrari, M., & Zhao, Y. (2015). Safety of Nanoparticles in Medicine. Current Drug Targets, 16(14), 1671–1681. https://doi.org/10.2174/1389450115666140804124808

Wu, Y.-K., Cheng, N.-C., & Cheng, C.-M. (2019). Biofilms in Chronic Wounds: Pathogenesis and Diagnosis. Trends in Biotechnology, 37(5), 505–517. https://doi.org/10.1016/j.tibtech.2018.10.011

Yang, Q., Larose, C., Della Porta, A. C., Schultz, G. S., & Gibson, D. J. (2017). A surfactant‐based wound dressing can reduce bacterial biofilms in a porcine skin explant model. International Wound Journal, 14(2), 408–413. https://doi.org/10.1111/iwj.12619

Yang, Q., Phillips, P. L., Sampson, E. M., Progulske‐Fox, A., Jin, S., Antonelli, P., & Schultz, G. S. (2013). Development of a novel ex vivo porcine skin explant model for the assessment of mature bacterial biofilms. Wound Repair and Regeneration, 21(5), 704–714. https://doi.org/10.1111/wrr.12074

Zhao, G., Usui, M. L., Underwood, R. A., Singh, P. K., James, G. A., Stewart, P. S., Fleckman, P., & Olerud, J. E. (2012). Time course study of delayed wound healing in a biofilm‐challenged diabetic mouse model. Wound Repair and Regeneration, 20(3), 342–352. https://doi.org/10.1111/j.1524-475X.2012.00793.x

Zoutman, D., McDonald, S., & Vethanayagan, D. (1998). Total and Attributable Costs of Surgical-Wound Infections at a Canadian Tertiary-Care Center. Infection Control and Hospital Epidemiology, 19(4), 254–259. https://doi.org/10.1086/647804

Zumbado, R., Barquero, A., & Hidalgo Mora, O. (2022). Resistencia a los antibióticos: Una Revisión Bibliográfica. Revista Ciencia y Salud Integrando Conocimientos, 6(3), 145–153. https://doi.org/10.34192/cienciaysalud.v6i3.500

Zunino, P. (2018). Historia y perspectivas del enfoque “Una Salud.” Veterinaria (Montevideo), 54(210), 46–51. https://doi.org/10.29155/VET.54.210.8

Descargas

Publicado

2024-06-30

Cómo citar

Estrategias para el manejo de heridas crónicas complicadas con biopelícula de bacterias multirresistentes en equinos: revisión bibliográfica, diagnóstico y protocolo de tratamiento. (2024). Ciencias Veterinarias, 42(1), 1-42. https://doi.org/10.15359/rcv.42-1.1

Número

Sección

Artículos -sección arbitrada, pares doble ciego-

Cómo citar

Estrategias para el manejo de heridas crónicas complicadas con biopelícula de bacterias multirresistentes en equinos: revisión bibliográfica, diagnóstico y protocolo de tratamiento. (2024). Ciencias Veterinarias, 42(1), 1-42. https://doi.org/10.15359/rcv.42-1.1

Comentarios (ver términos de uso)

Artículos más leídos del mismo autor/a